|
_base_ = ['./ld_r18_gflv1_r101_fpn_coco_1x.py'] |
|
teacher_ckpt = 'http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth' |
|
model = dict( |
|
pretrained='torchvision://resnet101', |
|
teacher_config='configs/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py', |
|
teacher_ckpt=teacher_ckpt, |
|
backbone=dict( |
|
type='ResNet', |
|
depth=101, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=True), |
|
norm_eval=True, |
|
style='pytorch'), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
start_level=1, |
|
add_extra_convs='on_output', |
|
num_outs=5)) |
|
|
|
lr_config = dict(step=[16, 22]) |
|
runner = dict(type='EpochBasedRunner', max_epochs=24) |
|
|
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='Resize', |
|
img_scale=[(1333, 480), (1333, 800)], |
|
multiscale_mode='range', |
|
keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), |
|
] |
|
data = dict(train=dict(pipeline=train_pipeline)) |
|
|