|
_base_ = '../fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py' |
|
model = dict( |
|
pretrained='open-mmlab://msra/hrnetv2_w32', |
|
backbone=dict( |
|
_delete_=True, |
|
type='HRNet', |
|
extra=dict( |
|
stage1=dict( |
|
num_modules=1, |
|
num_branches=1, |
|
block='BOTTLENECK', |
|
num_blocks=(4, ), |
|
num_channels=(64, )), |
|
stage2=dict( |
|
num_modules=1, |
|
num_branches=2, |
|
block='BASIC', |
|
num_blocks=(4, 4), |
|
num_channels=(32, 64)), |
|
stage3=dict( |
|
num_modules=4, |
|
num_branches=3, |
|
block='BASIC', |
|
num_blocks=(4, 4, 4), |
|
num_channels=(32, 64, 128)), |
|
stage4=dict( |
|
num_modules=3, |
|
num_branches=4, |
|
block='BASIC', |
|
num_blocks=(4, 4, 4, 4), |
|
num_channels=(32, 64, 128, 256)))), |
|
neck=dict( |
|
_delete_=True, |
|
type='HRFPN', |
|
in_channels=[32, 64, 128, 256], |
|
out_channels=256, |
|
stride=2, |
|
num_outs=5)) |
|
img_norm_cfg = dict( |
|
mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], to_rgb=False) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1333, 800), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
data = dict( |
|
train=dict(pipeline=train_pipeline), |
|
val=dict(pipeline=test_pipeline), |
|
test=dict(pipeline=test_pipeline)) |
|
|