|
_base_ = [ |
|
'../_base_/models/mask_rcnn_r50_fpn.py', |
|
'../_base_/datasets/coco_instance.py', |
|
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' |
|
] |
|
norm_cfg = dict(type='BN', requires_grad=True) |
|
model = dict( |
|
backbone=dict(norm_cfg=norm_cfg, norm_eval=False), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
norm_cfg=norm_cfg, |
|
num_outs=5), |
|
roi_head=dict( |
|
bbox_head=dict(norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) |
|
dataset_type = 'CocoDataset' |
|
data_root = 'data/coco/' |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
|
dict( |
|
type='Resize', |
|
img_scale=(640, 640), |
|
ratio_range=(0.8, 1.2), |
|
keep_ratio=True), |
|
dict(type='RandomCrop', crop_size=(640, 640)), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size=(640, 640)), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(640, 640), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=64), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
data = dict( |
|
samples_per_gpu=8, |
|
workers_per_gpu=4, |
|
train=dict(pipeline=train_pipeline), |
|
val=dict(pipeline=test_pipeline), |
|
test=dict(pipeline=test_pipeline)) |
|
|
|
optimizer = dict( |
|
type='SGD', |
|
lr=0.08, |
|
momentum=0.9, |
|
weight_decay=0.0001, |
|
paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) |
|
optimizer_config = dict(grad_clip=None) |
|
|
|
lr_config = dict( |
|
policy='step', |
|
warmup='linear', |
|
warmup_iters=1000, |
|
warmup_ratio=0.1, |
|
step=[30, 40]) |
|
|
|
runner = dict(max_epochs=50) |
|
evaluation = dict(interval=2) |
|
|