|
_base_ = 'mask_rcnn_r50_fpn_crop640_50e_coco.py' |
|
|
|
norm_cfg = dict(type='BN', requires_grad=True) |
|
model = dict( |
|
neck=dict( |
|
type='FPG', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
inter_channels=256, |
|
num_outs=5, |
|
stack_times=9, |
|
paths=['bu'] * 9, |
|
same_down_trans=None, |
|
same_up_trans=dict( |
|
type='conv', |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
norm_cfg=norm_cfg, |
|
inplace=False, |
|
order=('act', 'conv', 'norm')), |
|
across_lateral_trans=dict( |
|
type='conv', |
|
kernel_size=1, |
|
norm_cfg=norm_cfg, |
|
inplace=False, |
|
order=('act', 'conv', 'norm')), |
|
across_down_trans=dict( |
|
type='interpolation_conv', |
|
mode='nearest', |
|
kernel_size=3, |
|
norm_cfg=norm_cfg, |
|
order=('act', 'conv', 'norm'), |
|
inplace=False), |
|
across_up_trans=None, |
|
across_skip_trans=dict( |
|
type='conv', |
|
kernel_size=1, |
|
norm_cfg=norm_cfg, |
|
inplace=False, |
|
order=('act', 'conv', 'norm')), |
|
output_trans=dict( |
|
type='last_conv', |
|
kernel_size=3, |
|
order=('act', 'conv', 'norm'), |
|
inplace=False), |
|
norm_cfg=norm_cfg, |
|
skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()])) |
|
|