|
# Feature Pyramid Grids |
|
|
|
## Introduction |
|
|
|
```latex |
|
@article{chen2020feature, |
|
title={Feature pyramid grids}, |
|
author={Chen, Kai and Cao, Yuhang and Loy, Chen Change and Lin, Dahua and Feichtenhofer, Christoph}, |
|
journal={arXiv preprint arXiv:2004.03580}, |
|
year={2020} |
|
} |
|
``` |
|
|
|
## Results and Models |
|
|
|
We benchmark the new training schedule (crop training, large batch, unfrozen BN, 50 epochs) introduced in NAS-FPN. |
|
All backbones are Resnet-50 in pytorch style. |
|
|
|
| Method | Neck | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download | |
|
|:------------:|:-----------:|:-------:|:--------:|:--------------:|:------:|:-------:|:-------:|:--------:| |
|
| Faster R-CNN | FPG | 50e | 20.0 | - | 42.2 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/faster_rcnn_r50_fpg_crop640_50e_coco.py) | |
|
| Faster R-CNN | FPG-chn128 | 50e | 11.9 | - | 41.2 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco.py) | |
|
| Mask R-CNN | FPG | 50e | 23.2 | - | 42.7 | 37.8 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/mask_rcnn_r50_fpg_crop640_50e_coco.py) | |
|
| Mask R-CNN | FPG-chn128 | 50e | 15.3 | - | 41.7 | 36.9 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco.py) | |
|
| RetinaNet | FPG | 50e | 20.8 | - | 40.5 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/retinanet_r50_fpg_crop640_50e_coco.py) | |
|
| RetinaNet | FPG-chn128 | 50e | | - | | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco.py) | |
|
|
|
**Note**: Chn128 means to decrease the number of channels of features and convs from 256 (default) to 128 in |
|
Neck and BBox Head, which can greatly decrease memory consumption without sacrificing much precision. |
|
|