|
_base_ = [ |
|
'../_base_/models/mask_rcnn_r50_fpn.py', |
|
'../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py' |
|
] |
|
model = dict( |
|
pretrained=None, |
|
roi_head=dict( |
|
bbox_head=dict( |
|
type='Shared2FCBBoxHead', |
|
in_channels=256, |
|
fc_out_channels=1024, |
|
roi_feat_size=7, |
|
num_classes=8, |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0., 0., 0., 0.], |
|
target_stds=[0.1, 0.1, 0.2, 0.2]), |
|
reg_class_agnostic=False, |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), |
|
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), |
|
mask_head=dict( |
|
type='FCNMaskHead', |
|
num_convs=4, |
|
in_channels=256, |
|
conv_out_channels=256, |
|
num_classes=8, |
|
loss_mask=dict( |
|
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))) |
|
|
|
|
|
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) |
|
optimizer_config = dict(grad_clip=None) |
|
|
|
lr_config = dict( |
|
policy='step', |
|
warmup='linear', |
|
warmup_iters=500, |
|
warmup_ratio=0.001, |
|
|
|
step=[7]) |
|
runner = dict( |
|
type='EpochBasedRunner', max_epochs=8) |
|
log_config = dict(interval=100) |
|
|
|
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth' |
|
|