|
import argparse |
|
import glob |
|
import json |
|
import os.path as osp |
|
import shutil |
|
import subprocess |
|
|
|
import mmcv |
|
import torch |
|
|
|
|
|
def process_checkpoint(in_file, out_file): |
|
checkpoint = torch.load(in_file, map_location='cpu') |
|
|
|
if 'optimizer' in checkpoint: |
|
del checkpoint['optimizer'] |
|
|
|
|
|
torch.save(checkpoint, out_file) |
|
sha = subprocess.check_output(['sha256sum', out_file]).decode() |
|
final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8]) |
|
subprocess.Popen(['mv', out_file, final_file]) |
|
return final_file |
|
|
|
|
|
def get_final_epoch(config): |
|
cfg = mmcv.Config.fromfile('./configs/' + config) |
|
return cfg.total_epochs |
|
|
|
|
|
def get_final_results(log_json_path, epoch, results_lut): |
|
result_dict = dict() |
|
with open(log_json_path, 'r') as f: |
|
for line in f.readlines(): |
|
log_line = json.loads(line) |
|
if 'mode' not in log_line.keys(): |
|
continue |
|
|
|
if log_line['mode'] == 'train' and log_line['epoch'] == epoch: |
|
result_dict['memory'] = log_line['memory'] |
|
|
|
if log_line['mode'] == 'val' and log_line['epoch'] == epoch: |
|
result_dict.update({ |
|
key: log_line[key] |
|
for key in results_lut if key in log_line |
|
}) |
|
return result_dict |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Gather benchmarked models') |
|
parser.add_argument( |
|
'root', |
|
type=str, |
|
help='root path of benchmarked models to be gathered') |
|
parser.add_argument( |
|
'out', type=str, help='output path of gathered models to be stored') |
|
|
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
models_root = args.root |
|
models_out = args.out |
|
mmcv.mkdir_or_exist(models_out) |
|
|
|
|
|
raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True)) |
|
|
|
|
|
used_configs = [] |
|
for raw_config in raw_configs: |
|
if osp.exists(osp.join(models_root, raw_config)): |
|
used_configs.append(raw_config) |
|
print(f'Find {len(used_configs)} models to be gathered') |
|
|
|
|
|
|
|
model_infos = [] |
|
for used_config in used_configs: |
|
exp_dir = osp.join(models_root, used_config) |
|
|
|
final_epoch = get_final_epoch(used_config) |
|
final_model = 'epoch_{}.pth'.format(final_epoch) |
|
model_path = osp.join(exp_dir, final_model) |
|
|
|
|
|
if not osp.exists(model_path): |
|
continue |
|
|
|
|
|
log_json_path = list( |
|
sorted(glob.glob(osp.join(exp_dir, '*.log.json'))))[-1] |
|
log_txt_path = list(sorted(glob.glob(osp.join(exp_dir, '*.log'))))[-1] |
|
cfg = mmcv.Config.fromfile('./configs/' + used_config) |
|
results_lut = cfg.evaluation.metric |
|
if not isinstance(results_lut, list): |
|
results_lut = [results_lut] |
|
|
|
results_lut = [key + '_mAP' for key in results_lut if 'mAP' not in key] |
|
model_performance = get_final_results(log_json_path, final_epoch, |
|
results_lut) |
|
|
|
if model_performance is None: |
|
continue |
|
|
|
model_time = osp.split(log_txt_path)[-1].split('.')[0] |
|
model_infos.append( |
|
dict( |
|
config=used_config, |
|
results=model_performance, |
|
epochs=final_epoch, |
|
model_time=model_time, |
|
log_json_path=osp.split(log_json_path)[-1])) |
|
|
|
|
|
publish_model_infos = [] |
|
for model in model_infos: |
|
model_publish_dir = osp.join(models_out, model['config'].rstrip('.py')) |
|
mmcv.mkdir_or_exist(model_publish_dir) |
|
|
|
model_name = osp.split(model['config'])[-1].split('.')[0] |
|
|
|
model_name += '_' + model['model_time'] |
|
publish_model_path = osp.join(model_publish_dir, model_name) |
|
trained_model_path = osp.join(models_root, model['config'], |
|
'epoch_{}.pth'.format(model['epochs'])) |
|
|
|
|
|
final_model_path = process_checkpoint(trained_model_path, |
|
publish_model_path) |
|
|
|
|
|
shutil.copy( |
|
osp.join(models_root, model['config'], model['log_json_path']), |
|
osp.join(model_publish_dir, f'{model_name}.log.json')) |
|
shutil.copy( |
|
osp.join(models_root, model['config'], |
|
model['log_json_path'].rstrip('.json')), |
|
osp.join(model_publish_dir, f'{model_name}.log')) |
|
|
|
|
|
config_path = model['config'] |
|
config_path = osp.join( |
|
'configs', |
|
config_path) if 'configs' not in config_path else config_path |
|
target_cconfig_path = osp.split(config_path)[-1] |
|
shutil.copy(config_path, |
|
osp.join(model_publish_dir, target_cconfig_path)) |
|
|
|
model['model_path'] = final_model_path |
|
publish_model_infos.append(model) |
|
|
|
models = dict(models=publish_model_infos) |
|
print(f'Totally gathered {len(publish_model_infos)} models') |
|
mmcv.dump(models, osp.join(models_out, 'model_info.json')) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|