File size: 5,750 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import glob
import json
import os.path as osp
import shutil
import subprocess

import mmcv
import torch


def process_checkpoint(in_file, out_file):
    checkpoint = torch.load(in_file, map_location='cpu')
    # remove optimizer for smaller file size
    if 'optimizer' in checkpoint:
        del checkpoint['optimizer']
    # if it is necessary to remove some sensitive data in checkpoint['meta'],
    # add the code here.
    torch.save(checkpoint, out_file)
    sha = subprocess.check_output(['sha256sum', out_file]).decode()
    final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
    subprocess.Popen(['mv', out_file, final_file])
    return final_file


def get_final_epoch(config):
    cfg = mmcv.Config.fromfile('./configs/' + config)
    return cfg.total_epochs


def get_final_results(log_json_path, epoch, results_lut):
    result_dict = dict()
    with open(log_json_path, 'r') as f:
        for line in f.readlines():
            log_line = json.loads(line)
            if 'mode' not in log_line.keys():
                continue

            if log_line['mode'] == 'train' and log_line['epoch'] == epoch:
                result_dict['memory'] = log_line['memory']

            if log_line['mode'] == 'val' and log_line['epoch'] == epoch:
                result_dict.update({
                    key: log_line[key]
                    for key in results_lut if key in log_line
                })
                return result_dict


def parse_args():
    parser = argparse.ArgumentParser(description='Gather benchmarked models')
    parser.add_argument(
        'root',
        type=str,
        help='root path of benchmarked models to be gathered')
    parser.add_argument(
        'out', type=str, help='output path of gathered models to be stored')

    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    models_root = args.root
    models_out = args.out
    mmcv.mkdir_or_exist(models_out)

    # find all models in the root directory to be gathered
    raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True))

    # filter configs that is not trained in the experiments dir
    used_configs = []
    for raw_config in raw_configs:
        if osp.exists(osp.join(models_root, raw_config)):
            used_configs.append(raw_config)
    print(f'Find {len(used_configs)} models to be gathered')

    # find final_ckpt and log file for trained each config
    # and parse the best performance
    model_infos = []
    for used_config in used_configs:
        exp_dir = osp.join(models_root, used_config)
        # check whether the exps is finished
        final_epoch = get_final_epoch(used_config)
        final_model = 'epoch_{}.pth'.format(final_epoch)
        model_path = osp.join(exp_dir, final_model)

        # skip if the model is still training
        if not osp.exists(model_path):
            continue

        # get the latest logs
        log_json_path = list(
            sorted(glob.glob(osp.join(exp_dir, '*.log.json'))))[-1]
        log_txt_path = list(sorted(glob.glob(osp.join(exp_dir, '*.log'))))[-1]
        cfg = mmcv.Config.fromfile('./configs/' + used_config)
        results_lut = cfg.evaluation.metric
        if not isinstance(results_lut, list):
            results_lut = [results_lut]
        # case when using VOC, the evaluation key is only 'mAP'
        results_lut = [key + '_mAP' for key in results_lut if 'mAP' not in key]
        model_performance = get_final_results(log_json_path, final_epoch,
                                              results_lut)

        if model_performance is None:
            continue

        model_time = osp.split(log_txt_path)[-1].split('.')[0]
        model_infos.append(
            dict(
                config=used_config,
                results=model_performance,
                epochs=final_epoch,
                model_time=model_time,
                log_json_path=osp.split(log_json_path)[-1]))

    # publish model for each checkpoint
    publish_model_infos = []
    for model in model_infos:
        model_publish_dir = osp.join(models_out, model['config'].rstrip('.py'))
        mmcv.mkdir_or_exist(model_publish_dir)

        model_name = osp.split(model['config'])[-1].split('.')[0]

        model_name += '_' + model['model_time']
        publish_model_path = osp.join(model_publish_dir, model_name)
        trained_model_path = osp.join(models_root, model['config'],
                                      'epoch_{}.pth'.format(model['epochs']))

        # convert model
        final_model_path = process_checkpoint(trained_model_path,
                                              publish_model_path)

        # copy log
        shutil.copy(
            osp.join(models_root, model['config'], model['log_json_path']),
            osp.join(model_publish_dir, f'{model_name}.log.json'))
        shutil.copy(
            osp.join(models_root, model['config'],
                     model['log_json_path'].rstrip('.json')),
            osp.join(model_publish_dir, f'{model_name}.log'))

        # copy config to guarantee reproducibility
        config_path = model['config']
        config_path = osp.join(
            'configs',
            config_path) if 'configs' not in config_path else config_path
        target_cconfig_path = osp.split(config_path)[-1]
        shutil.copy(config_path,
                    osp.join(model_publish_dir, target_cconfig_path))

        model['model_path'] = final_model_path
        publish_model_infos.append(model)

    models = dict(models=publish_model_infos)
    print(f'Totally gathered {len(publish_model_infos)} models')
    mmcv.dump(models, osp.join(models_out, 'model_info.json'))


if __name__ == '__main__':
    main()