|
import os.path as osp |
|
|
|
import mmcv |
|
import numpy as np |
|
import pycocotools.mask as maskUtils |
|
|
|
from mmdet.core import BitmapMasks, PolygonMasks |
|
from ..builder import PIPELINES |
|
|
|
|
|
@PIPELINES.register_module() |
|
class LoadImageFromFile(object): |
|
"""Load an image from file. |
|
|
|
Required keys are "img_prefix" and "img_info" (a dict that must contain the |
|
key "filename"). Added or updated keys are "filename", "img", "img_shape", |
|
"ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`), |
|
"scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1). |
|
|
|
Args: |
|
to_float32 (bool): Whether to convert the loaded image to a float32 |
|
numpy array. If set to False, the loaded image is an uint8 array. |
|
Defaults to False. |
|
color_type (str): The flag argument for :func:`mmcv.imfrombytes`. |
|
Defaults to 'color'. |
|
file_client_args (dict): Arguments to instantiate a FileClient. |
|
See :class:`mmcv.fileio.FileClient` for details. |
|
Defaults to ``dict(backend='disk')``. |
|
""" |
|
|
|
def __init__(self, |
|
to_float32=False, |
|
color_type='color', |
|
file_client_args=dict(backend='disk')): |
|
self.to_float32 = to_float32 |
|
self.color_type = color_type |
|
self.file_client_args = file_client_args.copy() |
|
self.file_client = None |
|
|
|
def __call__(self, results): |
|
"""Call functions to load image and get image meta information. |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`mmdet.CustomDataset`. |
|
|
|
Returns: |
|
dict: The dict contains loaded image and meta information. |
|
""" |
|
|
|
if self.file_client is None: |
|
self.file_client = mmcv.FileClient(**self.file_client_args) |
|
|
|
if results['img_prefix'] is not None: |
|
filename = osp.join(results['img_prefix'], |
|
results['img_info']['filename']) |
|
else: |
|
filename = results['img_info']['filename'] |
|
|
|
img_bytes = self.file_client.get(filename) |
|
img = mmcv.imfrombytes(img_bytes, flag=self.color_type) |
|
if self.to_float32: |
|
img = img.astype(np.float32) |
|
|
|
results['filename'] = filename |
|
results['ori_filename'] = results['img_info']['filename'] |
|
results['img'] = img |
|
results['img_shape'] = img.shape |
|
results['ori_shape'] = img.shape |
|
results['img_fields'] = ['img'] |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = (f'{self.__class__.__name__}(' |
|
f'to_float32={self.to_float32}, ' |
|
f"color_type='{self.color_type}', " |
|
f'file_client_args={self.file_client_args})') |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class LoadImageFromWebcam(LoadImageFromFile): |
|
"""Load an image from webcam. |
|
|
|
Similar with :obj:`LoadImageFromFile`, but the image read from webcam is in |
|
``results['img']``. |
|
""" |
|
|
|
def __call__(self, results): |
|
"""Call functions to add image meta information. |
|
|
|
Args: |
|
results (dict): Result dict with Webcam read image in |
|
``results['img']``. |
|
|
|
Returns: |
|
dict: The dict contains loaded image and meta information. |
|
""" |
|
|
|
img = results['img'] |
|
if self.to_float32: |
|
img = img.astype(np.float32) |
|
|
|
results['filename'] = None |
|
results['ori_filename'] = None |
|
results['img'] = img |
|
results['img_shape'] = img.shape |
|
results['ori_shape'] = img.shape |
|
results['img_fields'] = ['img'] |
|
return results |
|
|
|
|
|
@PIPELINES.register_module() |
|
class LoadMultiChannelImageFromFiles(object): |
|
"""Load multi-channel images from a list of separate channel files. |
|
|
|
Required keys are "img_prefix" and "img_info" (a dict that must contain the |
|
key "filename", which is expected to be a list of filenames). |
|
Added or updated keys are "filename", "img", "img_shape", |
|
"ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`), |
|
"scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1). |
|
|
|
Args: |
|
to_float32 (bool): Whether to convert the loaded image to a float32 |
|
numpy array. If set to False, the loaded image is an uint8 array. |
|
Defaults to False. |
|
color_type (str): The flag argument for :func:`mmcv.imfrombytes`. |
|
Defaults to 'color'. |
|
file_client_args (dict): Arguments to instantiate a FileClient. |
|
See :class:`mmcv.fileio.FileClient` for details. |
|
Defaults to ``dict(backend='disk')``. |
|
""" |
|
|
|
def __init__(self, |
|
to_float32=False, |
|
color_type='unchanged', |
|
file_client_args=dict(backend='disk')): |
|
self.to_float32 = to_float32 |
|
self.color_type = color_type |
|
self.file_client_args = file_client_args.copy() |
|
self.file_client = None |
|
|
|
def __call__(self, results): |
|
"""Call functions to load multiple images and get images meta |
|
information. |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`mmdet.CustomDataset`. |
|
|
|
Returns: |
|
dict: The dict contains loaded images and meta information. |
|
""" |
|
|
|
if self.file_client is None: |
|
self.file_client = mmcv.FileClient(**self.file_client_args) |
|
|
|
if results['img_prefix'] is not None: |
|
filename = [ |
|
osp.join(results['img_prefix'], fname) |
|
for fname in results['img_info']['filename'] |
|
] |
|
else: |
|
filename = results['img_info']['filename'] |
|
|
|
img = [] |
|
for name in filename: |
|
img_bytes = self.file_client.get(name) |
|
img.append(mmcv.imfrombytes(img_bytes, flag=self.color_type)) |
|
img = np.stack(img, axis=-1) |
|
if self.to_float32: |
|
img = img.astype(np.float32) |
|
|
|
results['filename'] = filename |
|
results['ori_filename'] = results['img_info']['filename'] |
|
results['img'] = img |
|
results['img_shape'] = img.shape |
|
results['ori_shape'] = img.shape |
|
|
|
results['pad_shape'] = img.shape |
|
results['scale_factor'] = 1.0 |
|
num_channels = 1 if len(img.shape) < 3 else img.shape[2] |
|
results['img_norm_cfg'] = dict( |
|
mean=np.zeros(num_channels, dtype=np.float32), |
|
std=np.ones(num_channels, dtype=np.float32), |
|
to_rgb=False) |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = (f'{self.__class__.__name__}(' |
|
f'to_float32={self.to_float32}, ' |
|
f"color_type='{self.color_type}', " |
|
f'file_client_args={self.file_client_args})') |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class LoadAnnotations(object): |
|
"""Load mutiple types of annotations. |
|
|
|
Args: |
|
with_bbox (bool): Whether to parse and load the bbox annotation. |
|
Default: True. |
|
with_label (bool): Whether to parse and load the label annotation. |
|
Default: True. |
|
with_mask (bool): Whether to parse and load the mask annotation. |
|
Default: False. |
|
with_seg (bool): Whether to parse and load the semantic segmentation |
|
annotation. Default: False. |
|
poly2mask (bool): Whether to convert the instance masks from polygons |
|
to bitmaps. Default: True. |
|
file_client_args (dict): Arguments to instantiate a FileClient. |
|
See :class:`mmcv.fileio.FileClient` for details. |
|
Defaults to ``dict(backend='disk')``. |
|
""" |
|
|
|
def __init__(self, |
|
with_bbox=True, |
|
with_label=True, |
|
with_mask=False, |
|
with_seg=False, |
|
poly2mask=True, |
|
file_client_args=dict(backend='disk')): |
|
self.with_bbox = with_bbox |
|
self.with_label = with_label |
|
self.with_mask = with_mask |
|
self.with_seg = with_seg |
|
self.poly2mask = poly2mask |
|
self.file_client_args = file_client_args.copy() |
|
self.file_client = None |
|
|
|
def _load_bboxes(self, results): |
|
"""Private function to load bounding box annotations. |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`mmdet.CustomDataset`. |
|
|
|
Returns: |
|
dict: The dict contains loaded bounding box annotations. |
|
""" |
|
|
|
ann_info = results['ann_info'] |
|
results['gt_bboxes'] = ann_info['bboxes'].copy() |
|
|
|
gt_bboxes_ignore = ann_info.get('bboxes_ignore', None) |
|
if gt_bboxes_ignore is not None: |
|
results['gt_bboxes_ignore'] = gt_bboxes_ignore.copy() |
|
results['bbox_fields'].append('gt_bboxes_ignore') |
|
results['bbox_fields'].append('gt_bboxes') |
|
return results |
|
|
|
def _load_labels(self, results): |
|
"""Private function to load label annotations. |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`mmdet.CustomDataset`. |
|
|
|
Returns: |
|
dict: The dict contains loaded label annotations. |
|
""" |
|
|
|
results['gt_labels'] = results['ann_info']['labels'].copy() |
|
return results |
|
|
|
def _poly2mask(self, mask_ann, img_h, img_w): |
|
"""Private function to convert masks represented with polygon to |
|
bitmaps. |
|
|
|
Args: |
|
mask_ann (list | dict): Polygon mask annotation input. |
|
img_h (int): The height of output mask. |
|
img_w (int): The width of output mask. |
|
|
|
Returns: |
|
numpy.ndarray: The decode bitmap mask of shape (img_h, img_w). |
|
""" |
|
|
|
if isinstance(mask_ann, list): |
|
|
|
|
|
rles = maskUtils.frPyObjects(mask_ann, img_h, img_w) |
|
rle = maskUtils.merge(rles) |
|
elif isinstance(mask_ann['counts'], list): |
|
|
|
rle = maskUtils.frPyObjects(mask_ann, img_h, img_w) |
|
else: |
|
|
|
rle = mask_ann |
|
mask = maskUtils.decode(rle) |
|
return mask |
|
|
|
def process_polygons(self, polygons): |
|
"""Convert polygons to list of ndarray and filter invalid polygons. |
|
|
|
Args: |
|
polygons (list[list]): Polygons of one instance. |
|
|
|
Returns: |
|
list[numpy.ndarray]: Processed polygons. |
|
""" |
|
|
|
polygons = [np.array(p) for p in polygons] |
|
valid_polygons = [] |
|
for polygon in polygons: |
|
if len(polygon) % 2 == 0 and len(polygon) >= 6: |
|
valid_polygons.append(polygon) |
|
return valid_polygons |
|
|
|
def _load_masks(self, results): |
|
"""Private function to load mask annotations. |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`mmdet.CustomDataset`. |
|
|
|
Returns: |
|
dict: The dict contains loaded mask annotations. |
|
If ``self.poly2mask`` is set ``True``, `gt_mask` will contain |
|
:obj:`PolygonMasks`. Otherwise, :obj:`BitmapMasks` is used. |
|
""" |
|
|
|
h, w = results['img_info']['height'], results['img_info']['width'] |
|
gt_masks = results['ann_info']['masks'] |
|
if self.poly2mask: |
|
gt_masks = BitmapMasks( |
|
[self._poly2mask(mask, h, w) for mask in gt_masks], h, w) |
|
else: |
|
gt_masks = PolygonMasks( |
|
[self.process_polygons(polygons) for polygons in gt_masks], h, |
|
w) |
|
results['gt_masks'] = gt_masks |
|
results['mask_fields'].append('gt_masks') |
|
return results |
|
|
|
def _load_semantic_seg(self, results): |
|
"""Private function to load semantic segmentation annotations. |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`dataset`. |
|
|
|
Returns: |
|
dict: The dict contains loaded semantic segmentation annotations. |
|
""" |
|
|
|
if self.file_client is None: |
|
self.file_client = mmcv.FileClient(**self.file_client_args) |
|
|
|
filename = osp.join(results['seg_prefix'], |
|
results['ann_info']['seg_map']) |
|
img_bytes = self.file_client.get(filename) |
|
results['gt_semantic_seg'] = mmcv.imfrombytes( |
|
img_bytes, flag='unchanged').squeeze() |
|
results['seg_fields'].append('gt_semantic_seg') |
|
return results |
|
|
|
def __call__(self, results): |
|
"""Call function to load multiple types annotations. |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`mmdet.CustomDataset`. |
|
|
|
Returns: |
|
dict: The dict contains loaded bounding box, label, mask and |
|
semantic segmentation annotations. |
|
""" |
|
|
|
if self.with_bbox: |
|
results = self._load_bboxes(results) |
|
if results is None: |
|
return None |
|
if self.with_label: |
|
results = self._load_labels(results) |
|
if self.with_mask: |
|
results = self._load_masks(results) |
|
if self.with_seg: |
|
results = self._load_semantic_seg(results) |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(with_bbox={self.with_bbox}, ' |
|
repr_str += f'with_label={self.with_label}, ' |
|
repr_str += f'with_mask={self.with_mask}, ' |
|
repr_str += f'with_seg={self.with_seg}, ' |
|
repr_str += f'poly2mask={self.poly2mask}, ' |
|
repr_str += f'poly2mask={self.file_client_args})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class LoadProposals(object): |
|
"""Load proposal pipeline. |
|
|
|
Required key is "proposals". Updated keys are "proposals", "bbox_fields". |
|
|
|
Args: |
|
num_max_proposals (int, optional): Maximum number of proposals to load. |
|
If not specified, all proposals will be loaded. |
|
""" |
|
|
|
def __init__(self, num_max_proposals=None): |
|
self.num_max_proposals = num_max_proposals |
|
|
|
def __call__(self, results): |
|
"""Call function to load proposals from file. |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`mmdet.CustomDataset`. |
|
|
|
Returns: |
|
dict: The dict contains loaded proposal annotations. |
|
""" |
|
|
|
proposals = results['proposals'] |
|
if proposals.shape[1] not in (4, 5): |
|
raise AssertionError( |
|
'proposals should have shapes (n, 4) or (n, 5), ' |
|
f'but found {proposals.shape}') |
|
proposals = proposals[:, :4] |
|
|
|
if self.num_max_proposals is not None: |
|
proposals = proposals[:self.num_max_proposals] |
|
|
|
if len(proposals) == 0: |
|
proposals = np.array([[0, 0, 0, 0]], dtype=np.float32) |
|
results['proposals'] = proposals |
|
results['bbox_fields'].append('proposals') |
|
return results |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ + \ |
|
f'(num_max_proposals={self.num_max_proposals})' |
|
|
|
|
|
@PIPELINES.register_module() |
|
class FilterAnnotations(object): |
|
"""Filter invalid annotations. |
|
|
|
Args: |
|
min_gt_bbox_wh (tuple[int]): Minimum width and height of ground truth |
|
boxes. |
|
""" |
|
|
|
def __init__(self, min_gt_bbox_wh): |
|
|
|
self.min_gt_bbox_wh = min_gt_bbox_wh |
|
|
|
def __call__(self, results): |
|
assert 'gt_bboxes' in results |
|
gt_bboxes = results['gt_bboxes'] |
|
w = gt_bboxes[:, 2] - gt_bboxes[:, 0] |
|
h = gt_bboxes[:, 3] - gt_bboxes[:, 1] |
|
keep = (w > self.min_gt_bbox_wh[0]) & (h > self.min_gt_bbox_wh[1]) |
|
if not keep.any(): |
|
return None |
|
else: |
|
keys = ('gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg') |
|
for key in keys: |
|
if key in results: |
|
results[key] = results[key][keep] |
|
return results |
|
|
|
|
|
@PIPELINES.register_module() |
|
class LoadRPDV2Annotations(object): |
|
"""Load mutiple types of annotations. |
|
|
|
Args: |
|
with_bbox (bool): Whether to parse and load the bbox annotation. |
|
Default: True. |
|
with_label (bool): Whether to parse and load the label annotation. |
|
Default: True. |
|
with_mask (bool): Whether to parse and load the mask annotation. |
|
Default: False. |
|
with_seg (bool): Whether to parse and load the semantic segmentation |
|
annotation. Default: False. |
|
poly2mask (bool): Whether to convert the instance masks from polygons |
|
to bitmaps. Default: True. |
|
file_client_args (dict): Arguments to instantiate a FileClient. |
|
See :class:`mmcv.fileio.FileClient` for details. |
|
Defaults to ``dict(backend='disk')``. |
|
""" |
|
def __init__(self): |
|
super(LoadRPDV2Annotations, self).__init__() |
|
|
|
def _load_semantic_map_from_box(self, results): |
|
gt_bboxes = results['gt_bboxes'] |
|
gt_labels = results['gt_labels'] |
|
pad_shape = results['pad_shape'] |
|
gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (gt_bboxes[:, 3] - gt_bboxes[:, 1]) |
|
gt_sem_map = np.zeros((80, int(pad_shape[0] / 8), int(pad_shape[1] / 8)), dtype=np.float32) |
|
gt_sem_weights = np.zeros((80, int(pad_shape[0] / 8), int(pad_shape[1] / 8)), dtype=np.float32) |
|
|
|
indexs = np.argsort(gt_areas) |
|
for ind in indexs[::-1]: |
|
box = gt_bboxes[ind] |
|
box_mask = np.zeros((int(pad_shape[0] / 8), int(pad_shape[1] / 8)), dtype=np.int64) |
|
box_mask[int(box[1] / 8):int(box[3] / 8) + 1, int(box[0] / 8):int(box[2] / 8) + 1] = 1 |
|
gt_sem_map[gt_labels[ind]][box_mask > 0] = 1 |
|
gt_sem_weights[gt_labels[ind]][box_mask > 0] = 1 / gt_areas[ind] |
|
|
|
results['gt_sem_map'] = gt_sem_map |
|
results['gt_sem_weights'] = gt_sem_weights |
|
|
|
return results |
|
|
|
def __call__(self, results): |
|
"""Call function to load multiple types annotations |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`mmdet.CustomDataset`. |
|
|
|
Returns: |
|
dict: The dict contains loaded bounding box, label, mask and |
|
semantic segmentation annotations. |
|
""" |
|
|
|
results = self._load_semantic_map_from_box(results) |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(with_bbox_semantic_map={True}, ' |
|
return repr_str |