File size: 25,985 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
import numpy as np
import pytest
import torch

from mmdet.core import BitmapMasks, PolygonMasks


def dummy_raw_bitmap_masks(size):
    """
    Args:
        size (tuple): expected shape of dummy masks, (H, W) or (N, H, W)

    Return:
        ndarray: dummy mask
    """
    return np.random.randint(0, 2, size, dtype=np.uint8)


def dummy_raw_polygon_masks(size):
    """
    Args:
        size (tuple): expected shape of dummy masks, (N, H, W)

    Return:
        list[list[ndarray]]: dummy mask
    """
    num_obj, heigt, width = size
    polygons = []
    for _ in range(num_obj):
        num_points = np.random.randint(5) * 2 + 6
        polygons.append([np.random.uniform(0, min(heigt, width), num_points)])
    return polygons


def dummy_bboxes(num, max_height, max_width):
    x1y1 = np.random.randint(0, min(max_height // 2, max_width // 2), (num, 2))
    wh = np.random.randint(0, min(max_height // 2, max_width // 2), (num, 2))
    x2y2 = x1y1 + wh
    return np.concatenate([x1y1, x2y2], axis=1).squeeze().astype(np.float32)


def test_bitmap_mask_init():
    # init with empty ndarray masks
    raw_masks = np.empty((0, 28, 28), dtype=np.uint8)
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    assert len(bitmap_masks) == 0
    assert bitmap_masks.height == 28
    assert bitmap_masks.width == 28

    # init with empty list masks
    raw_masks = []
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    assert len(bitmap_masks) == 0
    assert bitmap_masks.height == 28
    assert bitmap_masks.width == 28

    # init with ndarray masks contain 3 instances
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    assert len(bitmap_masks) == 3
    assert bitmap_masks.height == 28
    assert bitmap_masks.width == 28

    # init with list masks contain 3 instances
    raw_masks = [dummy_raw_bitmap_masks((28, 28)) for _ in range(3)]
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    assert len(bitmap_masks) == 3
    assert bitmap_masks.height == 28
    assert bitmap_masks.width == 28

    # init with raw masks of unsupported type
    with pytest.raises(AssertionError):
        raw_masks = [[dummy_raw_bitmap_masks((28, 28))]]
        BitmapMasks(raw_masks, 28, 28)


def test_bitmap_mask_rescale():
    # rescale with empty bitmap masks
    raw_masks = dummy_raw_bitmap_masks((0, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    rescaled_masks = bitmap_masks.rescale((56, 72))
    assert len(rescaled_masks) == 0
    assert rescaled_masks.height == 56
    assert rescaled_masks.width == 56

    # rescale with bitmap masks contain 1 instances
    raw_masks = np.array([[[1, 0, 0, 0], [0, 1, 0, 1]]])
    bitmap_masks = BitmapMasks(raw_masks, 2, 4)
    rescaled_masks = bitmap_masks.rescale((8, 8))
    assert len(rescaled_masks) == 1
    assert rescaled_masks.height == 4
    assert rescaled_masks.width == 8
    truth = np.array([[[1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0],
                       [0, 0, 1, 1, 0, 0, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1]]])
    assert (rescaled_masks.masks == truth).all()


def test_bitmap_mask_resize():
    # resize with empty bitmap masks
    raw_masks = dummy_raw_bitmap_masks((0, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    resized_masks = bitmap_masks.resize((56, 72))
    assert len(resized_masks) == 0
    assert resized_masks.height == 56
    assert resized_masks.width == 72

    # resize with bitmap masks contain 1 instances
    raw_masks = np.diag(np.ones(4, dtype=np.uint8))[np.newaxis, ...]
    bitmap_masks = BitmapMasks(raw_masks, 4, 4)
    resized_masks = bitmap_masks.resize((8, 8))
    assert len(resized_masks) == 1
    assert resized_masks.height == 8
    assert resized_masks.width == 8
    truth = np.array([[[1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0],
                       [0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0],
                       [0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0],
                       [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1]]])
    assert (resized_masks.masks == truth).all()

    # resize to non-square
    raw_masks = np.diag(np.ones(4, dtype=np.uint8))[np.newaxis, ...]
    bitmap_masks = BitmapMasks(raw_masks, 4, 4)
    resized_masks = bitmap_masks.resize((4, 8))
    assert len(resized_masks) == 1
    assert resized_masks.height == 4
    assert resized_masks.width == 8
    truth = np.array([[[1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0],
                       [0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1]]])
    assert (resized_masks.masks == truth).all()


def test_bitmap_mask_flip():
    # flip with empty bitmap masks
    raw_masks = dummy_raw_bitmap_masks((0, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    flipped_masks = bitmap_masks.flip(flip_direction='horizontal')
    assert len(flipped_masks) == 0
    assert flipped_masks.height == 28
    assert flipped_masks.width == 28

    # horizontally flip with bitmap masks contain 3 instances
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    flipped_masks = bitmap_masks.flip(flip_direction='horizontal')
    flipped_flipped_masks = flipped_masks.flip(flip_direction='horizontal')
    assert flipped_masks.masks.shape == (3, 28, 28)
    assert (bitmap_masks.masks == flipped_flipped_masks.masks).all()
    assert (flipped_masks.masks == raw_masks[:, :, ::-1]).all()

    # vertically flip with bitmap masks contain 3 instances
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    flipped_masks = bitmap_masks.flip(flip_direction='vertical')
    flipped_flipped_masks = flipped_masks.flip(flip_direction='vertical')
    assert len(flipped_masks) == 3
    assert flipped_masks.height == 28
    assert flipped_masks.width == 28
    assert (bitmap_masks.masks == flipped_flipped_masks.masks).all()
    assert (flipped_masks.masks == raw_masks[:, ::-1, :]).all()

    # diagonal flip with bitmap masks contain 3 instances
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    flipped_masks = bitmap_masks.flip(flip_direction='diagonal')
    flipped_flipped_masks = flipped_masks.flip(flip_direction='diagonal')
    assert len(flipped_masks) == 3
    assert flipped_masks.height == 28
    assert flipped_masks.width == 28
    assert (bitmap_masks.masks == flipped_flipped_masks.masks).all()
    assert (flipped_masks.masks == raw_masks[:, ::-1, ::-1]).all()


def test_bitmap_mask_pad():
    # pad with empty bitmap masks
    raw_masks = dummy_raw_bitmap_masks((0, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    padded_masks = bitmap_masks.pad((56, 56))
    assert len(padded_masks) == 0
    assert padded_masks.height == 56
    assert padded_masks.width == 56

    # pad with bitmap masks contain 3 instances
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    padded_masks = bitmap_masks.pad((56, 56))
    assert len(padded_masks) == 3
    assert padded_masks.height == 56
    assert padded_masks.width == 56
    assert (padded_masks.masks[:, 28:, 28:] == 0).all()


def test_bitmap_mask_crop():
    # crop with empty bitmap masks
    dummy_bbox = np.array([0, 10, 10, 27], dtype=np.int)
    raw_masks = dummy_raw_bitmap_masks((0, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    cropped_masks = bitmap_masks.crop(dummy_bbox)
    assert len(cropped_masks) == 0
    assert cropped_masks.height == 17
    assert cropped_masks.width == 10

    # crop with bitmap masks contain 3 instances
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    cropped_masks = bitmap_masks.crop(dummy_bbox)
    assert len(cropped_masks) == 3
    assert cropped_masks.height == 17
    assert cropped_masks.width == 10
    x1, y1, x2, y2 = dummy_bbox
    assert (cropped_masks.masks == raw_masks[:, y1:y2, x1:x2]).all()

    # crop with invalid bbox
    with pytest.raises(AssertionError):
        dummy_bbox = dummy_bboxes(2, 28, 28)
        bitmap_masks.crop(dummy_bbox)


def test_bitmap_mask_crop_and_resize():
    dummy_bbox = dummy_bboxes(5, 28, 28)
    inds = np.random.randint(0, 3, (5, ))

    # crop and resize with empty bitmap masks
    raw_masks = dummy_raw_bitmap_masks((0, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    cropped_resized_masks = bitmap_masks.crop_and_resize(
        dummy_bbox, (56, 56), inds)
    assert len(cropped_resized_masks) == 0
    assert cropped_resized_masks.height == 56
    assert cropped_resized_masks.width == 56

    # crop and resize with bitmap masks contain 3 instances
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    cropped_resized_masks = bitmap_masks.crop_and_resize(
        dummy_bbox, (56, 56), inds)
    assert len(cropped_resized_masks) == 5
    assert cropped_resized_masks.height == 56
    assert cropped_resized_masks.width == 56


def test_bitmap_mask_expand():
    # expand with empty bitmap masks
    raw_masks = dummy_raw_bitmap_masks((0, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    expanded_masks = bitmap_masks.expand(56, 56, 12, 14)
    assert len(expanded_masks) == 0
    assert expanded_masks.height == 56
    assert expanded_masks.width == 56

    # expand with bitmap masks contain 3 instances
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    expanded_masks = bitmap_masks.expand(56, 56, 12, 14)
    assert len(expanded_masks) == 3
    assert expanded_masks.height == 56
    assert expanded_masks.width == 56
    assert (expanded_masks.masks[:, :12, :14] == 0).all()
    assert (expanded_masks.masks[:, 12 + 28:, 14 + 28:] == 0).all()


def test_bitmap_mask_area():
    # area of empty bitmap mask
    raw_masks = dummy_raw_bitmap_masks((0, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    assert bitmap_masks.areas.sum() == 0

    # area of bitmap masks contain 3 instances
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    areas = bitmap_masks.areas
    assert len(areas) == 3
    assert (areas == raw_masks.sum((1, 2))).all()


def test_bitmap_mask_to_ndarray():
    # empty bitmap masks to ndarray
    raw_masks = dummy_raw_bitmap_masks((0, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    ndarray_masks = bitmap_masks.to_ndarray()
    assert isinstance(ndarray_masks, np.ndarray)
    assert ndarray_masks.shape == (0, 28, 28)

    # bitmap masks contain 3 instances to ndarray
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    ndarray_masks = bitmap_masks.to_ndarray()
    assert isinstance(ndarray_masks, np.ndarray)
    assert ndarray_masks.shape == (3, 28, 28)
    assert (ndarray_masks == raw_masks).all()


def test_bitmap_mask_to_tensor():
    # empty bitmap masks to tensor
    raw_masks = dummy_raw_bitmap_masks((0, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    tensor_masks = bitmap_masks.to_tensor(dtype=torch.uint8, device='cpu')
    assert isinstance(tensor_masks, torch.Tensor)
    assert tensor_masks.shape == (0, 28, 28)

    # bitmap masks contain 3 instances to tensor
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    tensor_masks = bitmap_masks.to_tensor(dtype=torch.uint8, device='cpu')
    assert isinstance(tensor_masks, torch.Tensor)
    assert tensor_masks.shape == (3, 28, 28)
    assert (tensor_masks.numpy() == raw_masks).all()


def test_bitmap_mask_index():
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    assert (bitmap_masks[0].masks == raw_masks[0]).all()
    assert (bitmap_masks[range(2)].masks == raw_masks[range(2)]).all()


def test_bitmap_mask_iter():
    raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    for i, bitmap_mask in enumerate(bitmap_masks):
        assert bitmap_mask.shape == (28, 28)
        assert (bitmap_mask == raw_masks[i]).all()


def test_polygon_mask_init():
    # init with empty masks
    raw_masks = []
    polygon_masks = BitmapMasks(raw_masks, 28, 28)
    assert len(polygon_masks) == 0
    assert polygon_masks.height == 28
    assert polygon_masks.width == 28

    # init with masks contain 3 instances
    raw_masks = dummy_raw_polygon_masks((3, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    assert isinstance(polygon_masks.masks, list)
    assert isinstance(polygon_masks.masks[0], list)
    assert isinstance(polygon_masks.masks[0][0], np.ndarray)
    assert len(polygon_masks) == 3
    assert polygon_masks.height == 28
    assert polygon_masks.width == 28
    assert polygon_masks.to_ndarray().shape == (3, 28, 28)

    # init with raw masks of unsupported type
    with pytest.raises(AssertionError):
        raw_masks = [[[]]]
        PolygonMasks(raw_masks, 28, 28)

        raw_masks = [dummy_raw_polygon_masks((3, 28, 28))]
        PolygonMasks(raw_masks, 28, 28)


def test_polygon_mask_rescale():
    # rescale with empty polygon masks
    raw_masks = dummy_raw_polygon_masks((0, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    rescaled_masks = polygon_masks.rescale((56, 72))
    assert len(rescaled_masks) == 0
    assert rescaled_masks.height == 56
    assert rescaled_masks.width == 56
    assert rescaled_masks.to_ndarray().shape == (0, 56, 56)

    # rescale with polygon masks contain 3 instances
    raw_masks = [[np.array([1, 1, 3, 1, 4, 3, 2, 4, 1, 3], dtype=np.float)]]
    polygon_masks = PolygonMasks(raw_masks, 5, 5)
    rescaled_masks = polygon_masks.rescale((12, 10))
    assert len(rescaled_masks) == 1
    assert rescaled_masks.height == 10
    assert rescaled_masks.width == 10
    assert rescaled_masks.to_ndarray().shape == (1, 10, 10)
    truth = np.array(
        [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
         [0, 0, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
         [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
         [0, 0, 0, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
        np.uint8)
    assert (rescaled_masks.to_ndarray() == truth).all()


def test_polygon_mask_resize():
    # resize with empty polygon masks
    raw_masks = dummy_raw_polygon_masks((0, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    resized_masks = polygon_masks.resize((56, 72))
    assert len(resized_masks) == 0
    assert resized_masks.height == 56
    assert resized_masks.width == 72
    assert resized_masks.to_ndarray().shape == (0, 56, 72)

    # resize with polygon masks contain 1 instance 1 part
    raw_masks1 = [[np.array([1, 1, 3, 1, 4, 3, 2, 4, 1, 3], dtype=np.float)]]
    polygon_masks1 = PolygonMasks(raw_masks1, 5, 5)
    resized_masks1 = polygon_masks1.resize((10, 10))
    assert len(resized_masks1) == 1
    assert resized_masks1.height == 10
    assert resized_masks1.width == 10
    assert resized_masks1.to_ndarray().shape == (1, 10, 10)
    truth1 = np.array(
        [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
         [0, 0, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
         [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
         [0, 0, 0, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
        np.uint8)
    assert (resized_masks1.to_ndarray() == truth1).all()

    # resize with polygon masks contain 1 instance 2 part
    raw_masks2 = [[
        np.array([0., 0., 1., 0., 1., 1.]),
        np.array([1., 1., 2., 1., 2., 2., 1., 2.])
    ]]
    polygon_masks2 = PolygonMasks(raw_masks2, 3, 3)
    resized_masks2 = polygon_masks2.resize((6, 6))
    assert len(resized_masks2) == 1
    assert resized_masks2.height == 6
    assert resized_masks2.width == 6
    assert resized_masks2.to_ndarray().shape == (1, 6, 6)
    truth2 = np.array(
        [[0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0],
         [0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], np.uint8)
    assert (resized_masks2.to_ndarray() == truth2).all()

    # resize with polygon masks contain 2 instances
    raw_masks3 = [raw_masks1[0], raw_masks2[0]]
    polygon_masks3 = PolygonMasks(raw_masks3, 5, 5)
    resized_masks3 = polygon_masks3.resize((10, 10))
    assert len(resized_masks3) == 2
    assert resized_masks3.height == 10
    assert resized_masks3.width == 10
    assert resized_masks3.to_ndarray().shape == (2, 10, 10)
    truth3 = np.stack([truth1, np.pad(truth2, ((0, 4), (0, 4)), 'constant')])
    assert (resized_masks3.to_ndarray() == truth3).all()

    # resize to non-square
    raw_masks4 = [[np.array([1, 1, 3, 1, 4, 3, 2, 4, 1, 3], dtype=np.float)]]
    polygon_masks4 = PolygonMasks(raw_masks4, 5, 5)
    resized_masks4 = polygon_masks4.resize((5, 10))
    assert len(resized_masks4) == 1
    assert resized_masks4.height == 5
    assert resized_masks4.width == 10
    assert resized_masks4.to_ndarray().shape == (1, 5, 10)
    truth4 = np.array(
        [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
         [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], np.uint8)
    assert (resized_masks4.to_ndarray() == truth4).all()


def test_polygon_mask_flip():
    # flip with empty polygon masks
    raw_masks = dummy_raw_polygon_masks((0, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    flipped_masks = polygon_masks.flip(flip_direction='horizontal')
    assert len(flipped_masks) == 0
    assert flipped_masks.height == 28
    assert flipped_masks.width == 28
    assert flipped_masks.to_ndarray().shape == (0, 28, 28)

    # TODO: fixed flip correctness checking after v2.0_coord is merged
    # horizontally flip with polygon masks contain 3 instances
    raw_masks = dummy_raw_polygon_masks((3, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    flipped_masks = polygon_masks.flip(flip_direction='horizontal')
    flipped_flipped_masks = flipped_masks.flip(flip_direction='horizontal')
    assert len(flipped_masks) == 3
    assert flipped_masks.height == 28
    assert flipped_masks.width == 28
    assert flipped_masks.to_ndarray().shape == (3, 28, 28)
    assert (polygon_masks.to_ndarray() == flipped_flipped_masks.to_ndarray()
            ).all()

    # vertically flip with polygon masks contain 3 instances
    raw_masks = dummy_raw_polygon_masks((3, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    flipped_masks = polygon_masks.flip(flip_direction='vertical')
    flipped_flipped_masks = flipped_masks.flip(flip_direction='vertical')
    assert len(flipped_masks) == 3
    assert flipped_masks.height == 28
    assert flipped_masks.width == 28
    assert flipped_masks.to_ndarray().shape == (3, 28, 28)
    assert (polygon_masks.to_ndarray() == flipped_flipped_masks.to_ndarray()
            ).all()

    # diagonal flip with polygon masks contain 3 instances
    raw_masks = dummy_raw_polygon_masks((3, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    flipped_masks = polygon_masks.flip(flip_direction='diagonal')
    flipped_flipped_masks = flipped_masks.flip(flip_direction='diagonal')
    assert len(flipped_masks) == 3
    assert flipped_masks.height == 28
    assert flipped_masks.width == 28
    assert flipped_masks.to_ndarray().shape == (3, 28, 28)
    assert (polygon_masks.to_ndarray() == flipped_flipped_masks.to_ndarray()
            ).all()


def test_polygon_mask_crop():
    dummy_bbox = np.array([0, 10, 10, 27], dtype=np.int)
    # crop with empty polygon masks
    raw_masks = dummy_raw_polygon_masks((0, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    cropped_masks = polygon_masks.crop(dummy_bbox)
    assert len(cropped_masks) == 0
    assert cropped_masks.height == 17
    assert cropped_masks.width == 10
    assert cropped_masks.to_ndarray().shape == (0, 17, 10)

    # crop with polygon masks contain 1 instances
    raw_masks = [[np.array([1., 3., 5., 1., 5., 6., 1, 6])]]
    polygon_masks = PolygonMasks(raw_masks, 7, 7)
    bbox = np.array([0, 0, 3, 4])
    cropped_masks = polygon_masks.crop(bbox)
    assert len(cropped_masks) == 1
    assert cropped_masks.height == 4
    assert cropped_masks.width == 3
    assert cropped_masks.to_ndarray().shape == (1, 4, 3)
    truth = np.array([[0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 1, 1]])
    assert (cropped_masks.to_ndarray() == truth).all()

    # crop with invalid bbox
    with pytest.raises(AssertionError):
        dummy_bbox = dummy_bboxes(2, 28, 28)
        polygon_masks.crop(dummy_bbox)


def test_polygon_mask_pad():
    # pad with empty polygon masks
    raw_masks = dummy_raw_polygon_masks((0, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    padded_masks = polygon_masks.pad((56, 56))
    assert len(padded_masks) == 0
    assert padded_masks.height == 56
    assert padded_masks.width == 56
    assert padded_masks.to_ndarray().shape == (0, 56, 56)

    # pad with polygon masks contain 3 instances
    raw_masks = dummy_raw_polygon_masks((3, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    padded_masks = polygon_masks.pad((56, 56))
    assert len(padded_masks) == 3
    assert padded_masks.height == 56
    assert padded_masks.width == 56
    assert padded_masks.to_ndarray().shape == (3, 56, 56)
    assert (padded_masks.to_ndarray()[:, 28:, 28:] == 0).all()


def test_polygon_mask_expand():
    with pytest.raises(NotImplementedError):
        raw_masks = dummy_raw_polygon_masks((0, 28, 28))
        polygon_masks = PolygonMasks(raw_masks, 28, 28)
        polygon_masks.expand(56, 56, 10, 17)


def test_polygon_mask_crop_and_resize():
    dummy_bbox = dummy_bboxes(5, 28, 28)
    inds = np.random.randint(0, 3, (5, ))

    # crop and resize with empty polygon masks
    raw_masks = dummy_raw_polygon_masks((0, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    cropped_resized_masks = polygon_masks.crop_and_resize(
        dummy_bbox, (56, 56), inds)
    assert len(cropped_resized_masks) == 0
    assert cropped_resized_masks.height == 56
    assert cropped_resized_masks.width == 56
    assert cropped_resized_masks.to_ndarray().shape == (0, 56, 56)

    # crop and resize with polygon masks contain 3 instances
    raw_masks = dummy_raw_polygon_masks((3, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    cropped_resized_masks = polygon_masks.crop_and_resize(
        dummy_bbox, (56, 56), inds)
    assert len(cropped_resized_masks) == 5
    assert cropped_resized_masks.height == 56
    assert cropped_resized_masks.width == 56
    assert cropped_resized_masks.to_ndarray().shape == (5, 56, 56)


def test_polygon_mask_area():
    # area of empty polygon masks
    raw_masks = dummy_raw_polygon_masks((0, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    assert polygon_masks.areas.sum() == 0

    # area of polygon masks contain 1 instance
    # here we hack a case that the gap between the area of bitmap and polygon
    # is minor
    raw_masks = [[np.array([1, 1, 5, 1, 3, 4])]]
    polygon_masks = PolygonMasks(raw_masks, 6, 6)
    polygon_area = polygon_masks.areas
    bitmap_area = polygon_masks.to_bitmap().areas
    assert len(polygon_area) == 1
    assert np.isclose(polygon_area, bitmap_area).all()


def test_polygon_mask_to_bitmap():
    # polygon masks contain 3 instances to bitmap
    raw_masks = dummy_raw_polygon_masks((3, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    bitmap_masks = polygon_masks.to_bitmap()
    assert (polygon_masks.to_ndarray() == bitmap_masks.to_ndarray()).all()


def test_polygon_mask_to_ndarray():
    # empty polygon masks to ndarray
    raw_masks = dummy_raw_polygon_masks((0, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    ndarray_masks = polygon_masks.to_ndarray()
    assert isinstance(ndarray_masks, np.ndarray)
    assert ndarray_masks.shape == (0, 28, 28)

    # polygon masks contain 3 instances to ndarray
    raw_masks = dummy_raw_polygon_masks((3, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    ndarray_masks = polygon_masks.to_ndarray()
    assert isinstance(ndarray_masks, np.ndarray)
    assert ndarray_masks.shape == (3, 28, 28)


def test_polygon_to_tensor():
    # empty polygon masks to tensor
    raw_masks = dummy_raw_polygon_masks((0, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    tensor_masks = polygon_masks.to_tensor(dtype=torch.uint8, device='cpu')
    assert isinstance(tensor_masks, torch.Tensor)
    assert tensor_masks.shape == (0, 28, 28)

    # polygon masks contain 3 instances to tensor
    raw_masks = dummy_raw_polygon_masks((3, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    tensor_masks = polygon_masks.to_tensor(dtype=torch.uint8, device='cpu')
    assert isinstance(tensor_masks, torch.Tensor)
    assert tensor_masks.shape == (3, 28, 28)
    assert (tensor_masks.numpy() == polygon_masks.to_ndarray()).all()


def test_polygon_mask_index():
    raw_masks = dummy_raw_polygon_masks((3, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    # index by integer
    polygon_masks[0]
    # index by list
    polygon_masks[[0, 1]]
    # index by ndarray
    polygon_masks[np.asarray([0, 1])]
    with pytest.raises(ValueError):
        # invalid index
        polygon_masks[torch.Tensor([1, 2])]


def test_polygon_mask_iter():
    raw_masks = dummy_raw_polygon_masks((3, 28, 28))
    polygon_masks = PolygonMasks(raw_masks, 28, 28)
    for i, polygon_mask in enumerate(polygon_masks):
        assert np.equal(polygon_mask, raw_masks[i]).all()