File size: 7,781 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import pytest
import torch
from torch.nn.modules.batchnorm import _BatchNorm

from mmdet.models.necks import FPN, ChannelMapper


def test_fpn():
    """Tests fpn."""
    s = 64
    in_channels = [8, 16, 32, 64]
    feat_sizes = [s // 2**i for i in range(4)]  # [64, 32, 16, 8]
    out_channels = 8
    # `num_outs` is not equal to len(in_channels) - start_level
    with pytest.raises(AssertionError):
        FPN(in_channels=in_channels,
            out_channels=out_channels,
            start_level=1,
            num_outs=2)

    # `end_level` is larger than len(in_channels) - 1
    with pytest.raises(AssertionError):
        FPN(in_channels=in_channels,
            out_channels=out_channels,
            start_level=1,
            end_level=4,
            num_outs=2)

    # `num_outs` is not equal to end_level - start_level
    with pytest.raises(AssertionError):
        FPN(in_channels=in_channels,
            out_channels=out_channels,
            start_level=1,
            end_level=3,
            num_outs=1)

    # Invalid `add_extra_convs` option
    with pytest.raises(AssertionError):
        FPN(in_channels=in_channels,
            out_channels=out_channels,
            start_level=1,
            add_extra_convs='on_xxx',
            num_outs=5)

    fpn_model = FPN(
        in_channels=in_channels,
        out_channels=out_channels,
        start_level=1,
        add_extra_convs=True,
        num_outs=5)

    # FPN expects a multiple levels of features per image
    feats = [
        torch.rand(1, in_channels[i], feat_sizes[i], feat_sizes[i])
        for i in range(len(in_channels))
    ]
    outs = fpn_model(feats)
    assert fpn_model.add_extra_convs == 'on_input'
    assert len(outs) == fpn_model.num_outs
    for i in range(fpn_model.num_outs):
        outs[i].shape[1] == out_channels
        outs[i].shape[2] == outs[i].shape[3] == s // (2**i)

    # Tests for fpn with no extra convs (pooling is used instead)
    fpn_model = FPN(
        in_channels=in_channels,
        out_channels=out_channels,
        start_level=1,
        add_extra_convs=False,
        num_outs=5)
    outs = fpn_model(feats)
    assert len(outs) == fpn_model.num_outs
    assert not fpn_model.add_extra_convs
    for i in range(fpn_model.num_outs):
        outs[i].shape[1] == out_channels
        outs[i].shape[2] == outs[i].shape[3] == s // (2**i)

    # Tests for fpn with lateral bns
    fpn_model = FPN(
        in_channels=in_channels,
        out_channels=out_channels,
        start_level=1,
        add_extra_convs=True,
        no_norm_on_lateral=False,
        norm_cfg=dict(type='BN', requires_grad=True),
        num_outs=5)
    outs = fpn_model(feats)
    assert len(outs) == fpn_model.num_outs
    assert fpn_model.add_extra_convs == 'on_input'
    for i in range(fpn_model.num_outs):
        outs[i].shape[1] == out_channels
        outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
    bn_exist = False
    for m in fpn_model.modules():
        if isinstance(m, _BatchNorm):
            bn_exist = True
    assert bn_exist

    # Bilinear upsample
    fpn_model = FPN(
        in_channels=in_channels,
        out_channels=out_channels,
        start_level=1,
        add_extra_convs=True,
        upsample_cfg=dict(mode='bilinear', align_corners=True),
        num_outs=5)
    fpn_model(feats)
    outs = fpn_model(feats)
    assert len(outs) == fpn_model.num_outs
    assert fpn_model.add_extra_convs == 'on_input'
    for i in range(fpn_model.num_outs):
        outs[i].shape[1] == out_channels
        outs[i].shape[2] == outs[i].shape[3] == s // (2**i)

    # Scale factor instead of fixed upsample size upsample
    fpn_model = FPN(
        in_channels=in_channels,
        out_channels=out_channels,
        start_level=1,
        add_extra_convs=True,
        upsample_cfg=dict(scale_factor=2),
        num_outs=5)
    outs = fpn_model(feats)
    assert len(outs) == fpn_model.num_outs
    for i in range(fpn_model.num_outs):
        outs[i].shape[1] == out_channels
        outs[i].shape[2] == outs[i].shape[3] == s // (2**i)

    # Extra convs source is 'inputs'
    fpn_model = FPN(
        in_channels=in_channels,
        out_channels=out_channels,
        add_extra_convs='on_input',
        start_level=1,
        num_outs=5)
    assert fpn_model.add_extra_convs == 'on_input'
    outs = fpn_model(feats)
    assert len(outs) == fpn_model.num_outs
    for i in range(fpn_model.num_outs):
        outs[i].shape[1] == out_channels
        outs[i].shape[2] == outs[i].shape[3] == s // (2**i)

    # Extra convs source is 'laterals'
    fpn_model = FPN(
        in_channels=in_channels,
        out_channels=out_channels,
        add_extra_convs='on_lateral',
        start_level=1,
        num_outs=5)
    assert fpn_model.add_extra_convs == 'on_lateral'
    outs = fpn_model(feats)
    assert len(outs) == fpn_model.num_outs
    for i in range(fpn_model.num_outs):
        outs[i].shape[1] == out_channels
        outs[i].shape[2] == outs[i].shape[3] == s // (2**i)

    # Extra convs source is 'outputs'
    fpn_model = FPN(
        in_channels=in_channels,
        out_channels=out_channels,
        add_extra_convs='on_output',
        start_level=1,
        num_outs=5)
    assert fpn_model.add_extra_convs == 'on_output'
    outs = fpn_model(feats)
    assert len(outs) == fpn_model.num_outs
    for i in range(fpn_model.num_outs):
        outs[i].shape[1] == out_channels
        outs[i].shape[2] == outs[i].shape[3] == s // (2**i)

    # extra_convs_on_inputs=False is equal to extra convs source is 'on_output'
    fpn_model = FPN(
        in_channels=in_channels,
        out_channels=out_channels,
        add_extra_convs=True,
        extra_convs_on_inputs=False,
        start_level=1,
        num_outs=5,
    )
    assert fpn_model.add_extra_convs == 'on_output'
    outs = fpn_model(feats)
    assert len(outs) == fpn_model.num_outs
    for i in range(fpn_model.num_outs):
        outs[i].shape[1] == out_channels
        outs[i].shape[2] == outs[i].shape[3] == s // (2**i)

    # extra_convs_on_inputs=True is equal to extra convs source is 'on_input'
    fpn_model = FPN(
        in_channels=in_channels,
        out_channels=out_channels,
        add_extra_convs=True,
        extra_convs_on_inputs=True,
        start_level=1,
        num_outs=5,
    )
    assert fpn_model.add_extra_convs == 'on_input'
    outs = fpn_model(feats)
    assert len(outs) == fpn_model.num_outs
    for i in range(fpn_model.num_outs):
        outs[i].shape[1] == out_channels
        outs[i].shape[2] == outs[i].shape[3] == s // (2**i)


def test_channel_mapper():
    """Tests ChannelMapper."""
    s = 64
    in_channels = [8, 16, 32, 64]
    feat_sizes = [s // 2**i for i in range(4)]  # [64, 32, 16, 8]
    out_channels = 8
    kernel_size = 3
    feats = [
        torch.rand(1, in_channels[i], feat_sizes[i], feat_sizes[i])
        for i in range(len(in_channels))
    ]

    # in_channels must be a list
    with pytest.raises(AssertionError):
        channel_mapper = ChannelMapper(
            in_channels=10, out_channels=out_channels, kernel_size=kernel_size)
    # the length of channel_mapper's inputs must be equal to the length of
    # in_channels
    with pytest.raises(AssertionError):
        channel_mapper = ChannelMapper(
            in_channels=in_channels[:-1],
            out_channels=out_channels,
            kernel_size=kernel_size)
        channel_mapper(feats)

    channel_mapper = ChannelMapper(
        in_channels=in_channels,
        out_channels=out_channels,
        kernel_size=kernel_size)

    outs = channel_mapper(feats)
    assert len(outs) == len(feats)
    for i in range(len(feats)):
        outs[i].shape[1] == out_channels
        outs[i].shape[2] == outs[i].shape[3] == s // (2**i)