File size: 19,144 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
"""pytest tests/test_forward.py."""
import copy
from os.path import dirname, exists, join

import numpy as np
import pytest
import torch


def _get_config_directory():
    """Find the predefined detector config directory."""
    try:
        # Assume we are running in the source mmdetection repo
        repo_dpath = dirname(dirname(dirname(__file__)))
    except NameError:
        # For IPython development when this __file__ is not defined
        import mmdet
        repo_dpath = dirname(dirname(mmdet.__file__))
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
    """Load a configuration as a python module."""
    from mmcv import Config
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


def _get_detector_cfg(fname):
    """Grab configs necessary to create a detector.

    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
    """
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
    return model


def test_sparse_rcnn_forward():
    config_path = 'sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py'
    model = _get_detector_cfg(config_path)
    model['pretrained'] = None
    from mmdet.models import build_detector
    detector = build_detector(model)
    input_shape = (1, 3, 550, 550)
    mm_inputs = _demo_mm_inputs(input_shape, num_items=[5])
    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')
    # Test forward train with non-empty truth batch
    detector = detector
    imgs = imgs
    detector.train()
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_bboxes = [item for item in gt_bboxes]
    gt_labels = mm_inputs['gt_labels']
    gt_labels = [item for item in gt_labels]
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)
    loss, _ = detector._parse_losses(losses)
    assert float(loss.item()) > 0
    detector.forward_dummy(imgs)

    # Test forward train with an empty truth batch
    mm_inputs = _demo_mm_inputs(input_shape, num_items=[0])
    imgs = mm_inputs.pop('imgs')
    imgs = imgs
    img_metas = mm_inputs.pop('img_metas')
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_bboxes = [item for item in gt_bboxes]
    gt_labels = mm_inputs['gt_labels']
    gt_labels = [item for item in gt_labels]
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)
    loss, _ = detector._parse_losses(losses)
    assert float(loss.item()) > 0

    # Test forward test
    detector.eval()
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      rescale=True,
                                      return_loss=False)
            batch_results.append(result)


def test_rpn_forward():
    model = _get_detector_cfg('rpn/rpn_r50_fpn_1x_coco.py')
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model)

    input_shape = (1, 3, 224, 224)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    # Test forward train
    gt_bboxes = mm_inputs['gt_bboxes']
    losses = detector.forward(
        imgs, img_metas, gt_bboxes=gt_bboxes, return_loss=True)
    assert isinstance(losses, dict)

    # Test forward test
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      return_loss=False)
            batch_results.append(result)


@pytest.mark.parametrize(
    'cfg_file',
    [
        'retinanet/retinanet_r50_fpn_1x_coco.py',
        'guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py',
        'ghm/retinanet_ghm_r50_fpn_1x_coco.py',
        'fcos/fcos_center_r50_caffe_fpn_gn-head_1x_coco.py',
        'foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py',
        # 'free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py',
        # 'atss/atss_r50_fpn_1x_coco.py',  # not ready for topk
        'reppoints/reppoints_moment_r50_fpn_1x_coco.py',
        'yolo/yolov3_d53_mstrain-608_273e_coco.py'
    ])
def test_single_stage_forward_gpu(cfg_file):
    if not torch.cuda.is_available():
        import pytest
        pytest.skip('test requires GPU and torch+cuda')

    model = _get_detector_cfg(cfg_file)
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model)

    input_shape = (2, 3, 224, 224)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    detector = detector.cuda()
    imgs = imgs.cuda()
    # Test forward train
    gt_bboxes = [b.cuda() for b in mm_inputs['gt_bboxes']]
    gt_labels = [g.cuda() for g in mm_inputs['gt_labels']]
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)

    # Test forward test
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      return_loss=False)
            batch_results.append(result)


def test_faster_rcnn_ohem_forward():
    model = _get_detector_cfg(
        'faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py')
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model)

    input_shape = (1, 3, 256, 256)

    # Test forward train with a non-empty truth batch
    mm_inputs = _demo_mm_inputs(input_shape, num_items=[10])
    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)
    loss, _ = detector._parse_losses(losses)
    assert float(loss.item()) > 0

    # Test forward train with an empty truth batch
    mm_inputs = _demo_mm_inputs(input_shape, num_items=[0])
    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)
    loss, _ = detector._parse_losses(losses)
    assert float(loss.item()) > 0


@pytest.mark.parametrize('cfg_file', [
    'cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py',
    'mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py',
    'grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py',
    'ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py',
    'htc/htc_r50_fpn_1x_coco.py',
    'scnet/scnet_r50_fpn_20e_coco.py',
])
def test_two_stage_forward(cfg_file):
    models_with_semantic = [
        'htc/htc_r50_fpn_1x_coco.py',
        'scnet/scnet_r50_fpn_20e_coco.py',
    ]
    if cfg_file in models_with_semantic:
        with_semantic = True
    else:
        with_semantic = False

    model = _get_detector_cfg(cfg_file)
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model)

    input_shape = (1, 3, 256, 256)

    # Test forward train with a non-empty truth batch
    mm_inputs = _demo_mm_inputs(
        input_shape, num_items=[10], with_semantic=with_semantic)
    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')
    losses = detector.forward(imgs, img_metas, return_loss=True, **mm_inputs)
    assert isinstance(losses, dict)
    loss, _ = detector._parse_losses(losses)
    loss.requires_grad_(True)
    assert float(loss.item()) > 0
    loss.backward()

    # Test forward train with an empty truth batch
    mm_inputs = _demo_mm_inputs(
        input_shape, num_items=[0], with_semantic=with_semantic)
    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')
    losses = detector.forward(imgs, img_metas, return_loss=True, **mm_inputs)
    assert isinstance(losses, dict)
    loss, _ = detector._parse_losses(losses)
    loss.requires_grad_(True)
    assert float(loss.item()) > 0
    loss.backward()

    # Test forward test
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      return_loss=False)
            batch_results.append(result)


@pytest.mark.parametrize(
    'cfg_file', ['ghm/retinanet_ghm_r50_fpn_1x_coco.py', 'ssd/ssd300_coco.py'])
def test_single_stage_forward_cpu(cfg_file):
    model = _get_detector_cfg(cfg_file)
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model)

    input_shape = (1, 3, 300, 300)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    # Test forward train
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)

    # Test forward test
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      return_loss=False)
            batch_results.append(result)


def _demo_mm_inputs(input_shape=(1, 3, 300, 300),
                    num_items=None, num_classes=10,
                    with_semantic=False):  # yapf: disable
    """Create a superset of inputs needed to run test or train batches.

    Args:
        input_shape (tuple):
            input batch dimensions

        num_items (None | List[int]):
            specifies the number of boxes in each batch item

        num_classes (int):
            number of different labels a box might have
    """
    from mmdet.core import BitmapMasks

    (N, C, H, W) = input_shape

    rng = np.random.RandomState(0)

    imgs = rng.rand(*input_shape)

    img_metas = [{
        'img_shape': (H, W, C),
        'ori_shape': (H, W, C),
        'pad_shape': (H, W, C),
        'filename': '<demo>.png',
        'scale_factor': 1.0,
        'flip': False,
        'flip_direction': None,
    } for _ in range(N)]

    gt_bboxes = []
    gt_labels = []
    gt_masks = []

    for batch_idx in range(N):
        if num_items is None:
            num_boxes = rng.randint(1, 10)
        else:
            num_boxes = num_items[batch_idx]

        cx, cy, bw, bh = rng.rand(num_boxes, 4).T

        tl_x = ((cx * W) - (W * bw / 2)).clip(0, W)
        tl_y = ((cy * H) - (H * bh / 2)).clip(0, H)
        br_x = ((cx * W) + (W * bw / 2)).clip(0, W)
        br_y = ((cy * H) + (H * bh / 2)).clip(0, H)

        boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T
        class_idxs = rng.randint(1, num_classes, size=num_boxes)

        gt_bboxes.append(torch.FloatTensor(boxes))
        gt_labels.append(torch.LongTensor(class_idxs))

    mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8)
    gt_masks.append(BitmapMasks(mask, H, W))

    mm_inputs = {
        'imgs': torch.FloatTensor(imgs).requires_grad_(True),
        'img_metas': img_metas,
        'gt_bboxes': gt_bboxes,
        'gt_labels': gt_labels,
        'gt_bboxes_ignore': None,
        'gt_masks': gt_masks,
    }

    if with_semantic:
        # assume gt_semantic_seg using scale 1/8 of the img
        gt_semantic_seg = np.random.randint(
            0, num_classes, (1, 1, H // 8, W // 8), dtype=np.uint8)
        mm_inputs.update(
            {'gt_semantic_seg': torch.ByteTensor(gt_semantic_seg)})

    return mm_inputs


def test_yolact_forward():
    model = _get_detector_cfg('yolact/yolact_r50_1x8_coco.py')
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model)

    input_shape = (1, 3, 100, 100)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    # Test forward train
    detector.train()
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    gt_masks = mm_inputs['gt_masks']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        gt_masks=gt_masks,
        return_loss=True)
    assert isinstance(losses, dict)

    # Test forward test
    detector.eval()
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      rescale=True,
                                      return_loss=False)
            batch_results.append(result)


def test_detr_forward():
    model = _get_detector_cfg('detr/detr_r50_8x2_150e_coco.py')
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model)

    input_shape = (1, 3, 100, 100)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    # Test forward train with non-empty truth batch
    detector.train()
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)
    loss, _ = detector._parse_losses(losses)
    assert float(loss.item()) > 0

    # Test forward train with an empty truth batch
    mm_inputs = _demo_mm_inputs(input_shape, num_items=[0])
    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)
    loss, _ = detector._parse_losses(losses)
    assert float(loss.item()) > 0

    # Test forward test
    detector.eval()
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      rescale=True,
                                      return_loss=False)
            batch_results.append(result)


def test_kd_single_stage_forward():
    model = _get_detector_cfg('ld/ld_r18_gflv1_r101_fpn_coco_1x.py')
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model)

    input_shape = (1, 3, 100, 100)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    # Test forward train with non-empty truth batch
    detector.train()
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)
    loss, _ = detector._parse_losses(losses)
    assert float(loss.item()) > 0

    # Test forward train with an empty truth batch
    mm_inputs = _demo_mm_inputs(input_shape, num_items=[0])
    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)
    loss, _ = detector._parse_losses(losses)
    assert float(loss.item()) > 0

    # Test forward test
    detector.eval()
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      rescale=True,
                                      return_loss=False)
            batch_results.append(result)


def test_inference_detector():
    from mmdet.apis import inference_detector
    from mmdet.models import build_detector
    from mmcv import ConfigDict

    # small RetinaNet
    num_class = 3
    model_dict = dict(
        type='RetinaNet',
        pretrained=None,
        backbone=dict(
            type='ResNet',
            depth=18,
            num_stages=4,
            out_indices=(3, ),
            norm_cfg=dict(type='BN', requires_grad=False),
            norm_eval=True,
            style='pytorch'),
        neck=None,
        bbox_head=dict(
            type='RetinaHead',
            num_classes=num_class,
            in_channels=512,
            stacked_convs=1,
            feat_channels=256,
            anchor_generator=dict(
                type='AnchorGenerator',
                octave_base_scale=4,
                scales_per_octave=3,
                ratios=[0.5],
                strides=[32]),
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[.0, .0, .0, .0],
                target_stds=[1.0, 1.0, 1.0, 1.0]),
        ),
        test_cfg=dict(
            nms_pre=1000,
            min_bbox_size=0,
            score_thr=0.05,
            nms=dict(type='nms', iou_threshold=0.5),
            max_per_img=100))

    rng = np.random.RandomState(0)
    img1 = rng.rand(100, 100, 3)
    img2 = rng.rand(100, 100, 3)

    model = build_detector(ConfigDict(model_dict))
    config = _get_config_module('retinanet/retinanet_r50_fpn_1x_coco.py')
    model.cfg = config
    # test single image
    result = inference_detector(model, img1)
    assert len(result) == num_class
    # test multiple image
    result = inference_detector(model, [img1, img2])
    assert len(result) == 2 and len(result[0]) == num_class