File size: 10,616 Bytes
e26e560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import copy
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv import ConfigDict
from mmcv.cnn import normal_init
from mmcv.ops import batched_nms
from ..builder import HEADS
from .anchor_head import AnchorHead
from .rpn_test_mixin import RPNTestMixin
@HEADS.register_module()
class RPNHead(RPNTestMixin, AnchorHead):
"""RPN head.
Args:
in_channels (int): Number of channels in the input feature map.
""" # noqa: W605
def __init__(self, in_channels, **kwargs):
super(RPNHead, self).__init__(1, in_channels, **kwargs)
def _init_layers(self):
"""Initialize layers of the head."""
self.rpn_conv = nn.Conv2d(
self.in_channels, self.feat_channels, 3, padding=1)
self.rpn_cls = nn.Conv2d(self.feat_channels,
self.num_anchors * self.cls_out_channels, 1)
self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 1)
def init_weights(self):
"""Initialize weights of the head."""
normal_init(self.rpn_conv, std=0.01)
normal_init(self.rpn_cls, std=0.01)
normal_init(self.rpn_reg, std=0.01)
def forward_single(self, x):
"""Forward feature map of a single scale level."""
x = self.rpn_conv(x)
x = F.relu(x, inplace=True)
rpn_cls_score = self.rpn_cls(x)
rpn_bbox_pred = self.rpn_reg(x)
return rpn_cls_score, rpn_bbox_pred
def loss(self,
cls_scores,
bbox_preds,
gt_bboxes,
img_metas,
gt_bboxes_ignore=None):
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W)
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
losses = super(RPNHead, self).loss(
cls_scores,
bbox_preds,
gt_bboxes,
None,
img_metas,
gt_bboxes_ignore=gt_bboxes_ignore)
return dict(
loss_rpn_cls=losses['loss_cls'], loss_rpn_bbox=losses['loss_bbox'])
def _get_bboxes(self,
cls_scores,
bbox_preds,
mlvl_anchors,
img_shapes,
scale_factors,
cfg,
rescale=False):
"""Transform outputs for a single batch item into bbox predictions.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W).
mlvl_anchors (list[Tensor]): Box reference for each scale level
with shape (num_total_anchors, 4).
img_shapes (list[tuple[int]]): Shape of the input image,
(height, width, 3).
scale_factors (list[ndarray]): Scale factor of the image arange as
(w_scale, h_scale, w_scale, h_scale).
cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Returns:
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
The first item is an (n, 5) tensor, where the first 4 columns
are bounding box positions (tl_x, tl_y, br_x, br_y) and the
5-th column is a score between 0 and 1. The second item is a
(n,) tensor where each item is the predicted class labelof the
corresponding box.
"""
cfg = self.test_cfg if cfg is None else cfg
cfg = copy.deepcopy(cfg)
# bboxes from different level should be independent during NMS,
# level_ids are used as labels for batched NMS to separate them
level_ids = []
mlvl_scores = []
mlvl_bbox_preds = []
mlvl_valid_anchors = []
batch_size = cls_scores[0].shape[0]
nms_pre_tensor = torch.tensor(
cfg.nms_pre, device=cls_scores[0].device, dtype=torch.long)
for idx in range(len(cls_scores)):
rpn_cls_score = cls_scores[idx]
rpn_bbox_pred = bbox_preds[idx]
assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:]
rpn_cls_score = rpn_cls_score.permute(0, 2, 3, 1)
if self.use_sigmoid_cls:
rpn_cls_score = rpn_cls_score.reshape(batch_size, -1)
scores = rpn_cls_score.sigmoid()
else:
rpn_cls_score = rpn_cls_score.reshape(batch_size, -1, 2)
# We set FG labels to [0, num_class-1] and BG label to
# num_class in RPN head since mmdet v2.5, which is unified to
# be consistent with other head since mmdet v2.0. In mmdet v2.0
# to v2.4 we keep BG label as 0 and FG label as 1 in rpn head.
scores = rpn_cls_score.softmax(-1)[..., 0]
rpn_bbox_pred = rpn_bbox_pred.permute(0, 2, 3, 1).reshape(
batch_size, -1, 4)
anchors = mlvl_anchors[idx]
anchors = anchors.expand_as(rpn_bbox_pred)
if nms_pre_tensor > 0:
# sort is faster than topk
# _, topk_inds = scores.topk(cfg.nms_pre)
# keep topk op for dynamic k in onnx model
if torch.onnx.is_in_onnx_export():
# sort op will be converted to TopK in onnx
# and k<=3480 in TensorRT
scores_shape = torch._shape_as_tensor(scores)
nms_pre = torch.where(scores_shape[1] < nms_pre_tensor,
scores_shape[1], nms_pre_tensor)
_, topk_inds = scores.topk(nms_pre)
batch_inds = torch.arange(batch_size).view(
-1, 1).expand_as(topk_inds)
scores = scores[batch_inds, topk_inds]
rpn_bbox_pred = rpn_bbox_pred[batch_inds, topk_inds, :]
anchors = anchors[batch_inds, topk_inds, :]
elif scores.shape[-1] > cfg.nms_pre:
ranked_scores, rank_inds = scores.sort(descending=True)
topk_inds = rank_inds[:, :cfg.nms_pre]
scores = ranked_scores[:, :cfg.nms_pre]
batch_inds = torch.arange(batch_size).view(
-1, 1).expand_as(topk_inds)
rpn_bbox_pred = rpn_bbox_pred[batch_inds, topk_inds, :]
anchors = anchors[batch_inds, topk_inds, :]
mlvl_scores.append(scores)
mlvl_bbox_preds.append(rpn_bbox_pred)
mlvl_valid_anchors.append(anchors)
level_ids.append(
scores.new_full((
batch_size,
scores.size(1),
),
idx,
dtype=torch.long))
batch_mlvl_scores = torch.cat(mlvl_scores, dim=1)
batch_mlvl_anchors = torch.cat(mlvl_valid_anchors, dim=1)
batch_mlvl_rpn_bbox_pred = torch.cat(mlvl_bbox_preds, dim=1)
batch_mlvl_proposals = self.bbox_coder.decode(
batch_mlvl_anchors, batch_mlvl_rpn_bbox_pred, max_shape=img_shapes)
batch_mlvl_ids = torch.cat(level_ids, dim=1)
# deprecate arguments warning
if 'nms' not in cfg or 'max_num' in cfg or 'nms_thr' in cfg:
warnings.warn(
'In rpn_proposal or test_cfg, '
'nms_thr has been moved to a dict named nms as '
'iou_threshold, max_num has been renamed as max_per_img, '
'name of original arguments and the way to specify '
'iou_threshold of NMS will be deprecated.')
if 'nms' not in cfg:
cfg.nms = ConfigDict(dict(type='nms', iou_threshold=cfg.nms_thr))
if 'max_num' in cfg:
if 'max_per_img' in cfg:
assert cfg.max_num == cfg.max_per_img, f'You ' \
f'set max_num and ' \
f'max_per_img at the same time, but get {cfg.max_num} ' \
f'and {cfg.max_per_img} respectively' \
'Please delete max_num which will be deprecated.'
else:
cfg.max_per_img = cfg.max_num
if 'nms_thr' in cfg:
assert cfg.nms.iou_threshold == cfg.nms_thr, f'You set' \
f' iou_threshold in nms and ' \
f'nms_thr at the same time, but get' \
f' {cfg.nms.iou_threshold} and {cfg.nms_thr}' \
f' respectively. Please delete the nms_thr ' \
f'which will be deprecated.'
result_list = []
for (mlvl_proposals, mlvl_scores,
mlvl_ids) in zip(batch_mlvl_proposals, batch_mlvl_scores,
batch_mlvl_ids):
# Skip nonzero op while exporting to ONNX
if cfg.min_bbox_size > 0 and (not torch.onnx.is_in_onnx_export()):
w = mlvl_proposals[:, 2] - mlvl_proposals[:, 0]
h = mlvl_proposals[:, 3] - mlvl_proposals[:, 1]
valid_ind = torch.nonzero(
(w >= cfg.min_bbox_size)
& (h >= cfg.min_bbox_size),
as_tuple=False).squeeze()
if valid_ind.sum().item() != len(mlvl_proposals):
mlvl_proposals = mlvl_proposals[valid_ind, :]
mlvl_scores = mlvl_scores[valid_ind]
mlvl_ids = mlvl_ids[valid_ind]
dets, keep = batched_nms(mlvl_proposals, mlvl_scores, mlvl_ids,
cfg.nms)
result_list.append(dets[:cfg.max_per_img])
return result_list
|