File size: 61,971 Bytes
e26e560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init
from mmcv.ops import DeformConv2d, CornerPool
from mmdet.core import (PointGenerator, build_assigner, build_sampler,
images_to_levels, multi_apply, multiclass_nms_rpd, unmap)
from ..builder import HEADS, build_loss, build_head
from .anchor_free_head import AnchorFreeHead
from mmdet.utils.instances import Instances
from mmdet.utils.common import compute_locations
from itertools import accumulate
class CornerPoolPack(nn.Module):
def __init__(self, dim, pool1, pool2, conv_cfg=None, norm_cfg=None, first_kernel_size=3, kernel_size=3, corner_dim=128):
super(CornerPoolPack, self).__init__()
self.p1_conv1 = ConvModule(
dim,
corner_dim,
first_kernel_size,
stride=1,
padding=(first_kernel_size - 1) // 2,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg)
self.p2_conv1 = ConvModule(
dim,
corner_dim,
first_kernel_size,
stride=1,
padding=(first_kernel_size - 1) // 2,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg)
self.p_conv1 = nn.Conv2d(corner_dim, dim, 3, padding=1, bias=False)
self.p_gn1 = nn.GroupNorm(num_groups=32, num_channels=dim)
self.conv1 = nn.Conv2d(dim, dim, 1, bias=False)
self.gn1 = nn.GroupNorm(num_groups=32, num_channels=dim)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = ConvModule(
dim,
dim,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg)
self.pool1 = pool1
self.pool2 = pool2
def forward(self, x):
# pool 1
p1_conv1 = self.p1_conv1(x)
pool1 = self.pool1(p1_conv1)
# pool 2
p2_conv1 = self.p2_conv1(x)
pool2 = self.pool2(p2_conv1)
# pool 1 + pool 2
p_conv1 = self.p_conv1(pool1 + pool2)
p_gn1 = self.p_gn1(p_conv1)
conv1 = self.conv1(x)
gn1 = self.gn1(conv1)
relu1 = self.relu1(p_gn1 + gn1)
conv2 = self.conv2(relu1)
return conv2
class TLPool(CornerPoolPack):
def __init__(self, dim, conv_cfg=None, norm_cfg=None, first_kernel_size=3, kernel_size=3, corner_dim=128):
super(TLPool, self).__init__(dim, CornerPool('top'), CornerPool('left'), conv_cfg, norm_cfg, first_kernel_size, kernel_size, corner_dim)
class BRPool(CornerPoolPack):
def __init__(self, dim, conv_cfg=None, norm_cfg=None, first_kernel_size=3, kernel_size=3, corner_dim=128):
super(BRPool, self).__init__(dim, CornerPool('bottom'), CornerPool('right'), conv_cfg, norm_cfg, first_kernel_size, kernel_size, corner_dim)
@HEADS.register_module()
class RepPointsV2Head(AnchorFreeHead):
"""RepPointV2 head. With mask branch support
Args:
point_feat_channels (int): Number of channels of points features.
gradient_mul (float): The multiplier to gradients from
points refinement and recognition.
point_strides (Iterable): points strides.
point_base_scale (int): bbox scale for assigning labels.
loss_cls (dict): Config of classification loss.
loss_bbox_init (dict): Config of initial points loss.
loss_bbox_refine (dict): Config of points loss in refinement.
use_grid_points (bool): If we use bounding box representation, the
reppoints is represented as grid points on the bounding box.
center_init (bool): Whether to use center point assignment.
transform_method (str): The methods to transform RepPoints to bbox.
""" # noqa: W605
def __init__(self,
num_classes,
in_channels,
point_feat_channels=256,
shared_stacked_convs=1,
first_kernel_size=3,
kernel_size=1,
corner_dim=64,
num_points=9,
gradient_mul=0.1,
point_strides=[8, 16, 32, 64, 128],
point_base_scale=4,
corner_refine=True,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox_init=dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.5),
loss_bbox_refine=dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_heatmap=dict(
type='GaussianFocalLoss',
alpha=2.0,
gamma=4.0,
loss_weight=0.25),
loss_offset=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_sem=dict(type='SEPFocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=0.1),
use_grid_points=False,
center_init=True,
transform_method='moment',
moment_mul=0.01,
mask_head=None,
background_label=None,
**kwargs):
self.background_label = (
num_classes if background_label is None else background_label)
# background_label should be either 0 or num_classes
assert (self.background_label == 0
or self.background_label == num_classes)
self.num_points = num_points
self.point_feat_channels = point_feat_channels
self.shared_stacked_convs = shared_stacked_convs
self.use_grid_points = use_grid_points
self.center_init = center_init
self.first_kernel_size = first_kernel_size
self.kernel_size = kernel_size
self.corner_dim = corner_dim
self.corner_refine = corner_refine
# we use deformable conv to extract points features
self.dcn_kernel = int(np.sqrt(num_points))
self.dcn_pad = int((self.dcn_kernel - 1) / 2)
assert self.dcn_kernel * self.dcn_kernel == num_points, \
'The points number should be a square number.'
assert self.dcn_kernel % 2 == 1, \
'The points number should be an odd square number.'
dcn_base = np.arange(-self.dcn_pad,
self.dcn_pad + 1).astype(np.float64)
dcn_base_y = np.repeat(dcn_base, self.dcn_kernel)
dcn_base_x = np.tile(dcn_base, self.dcn_kernel)
dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape(
(-1))
self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1)
self.controller_on = kwargs.pop('controller_on', 'cls')
self.coord_pos = kwargs.pop('coord_pos', 'grid')
if mask_head is not None and self.coord_pos in ['grid', 'center']:
mask_head.head_cfg.rel_num = 1
elif mask_head is not None and self.coord_pos in ['center-lt-rb']:
mask_head.head_cfg.rel_num = 3
super().__init__(num_classes, in_channels, loss_cls=loss_cls, **kwargs)
self.gradient_mul = gradient_mul
self.point_base_scale = point_base_scale
self.point_strides = point_strides
self.point_generators = [PointGenerator() for _ in self.point_strides]
if self.train_cfg:
self.init_assigner = build_assigner(self.train_cfg.init.assigner)
self.refine_assigner = build_assigner(self.train_cfg.refine.assigner)
self.hm_assigner = build_assigner(self.train_cfg.heatmap.assigner)
# use PseudoSampler when sampling is False
sampler_cfg = dict(type='PseudoSampler')
self.sampler = build_sampler(sampler_cfg, context=self)
self.transform_method = transform_method
if self.transform_method == 'moment':
self.moment_transfer = nn.Parameter(data=torch.zeros(2), requires_grad=True)
self.moment_mul = moment_mul
self.cls_out_channels = self.num_classes
self.loss_bbox_init = build_loss(loss_bbox_init)
self.loss_bbox_refine = build_loss(loss_bbox_refine)
self.loss_heatmap = build_loss(loss_heatmap)
self.loss_offset = build_loss(loss_offset)
self.loss_sem = build_loss(loss_sem)
# mask
self.mask_head = mask_head
if mask_head is not None:
self.mask_head = build_head(mask_head)
self.controller = nn.Conv2d(
point_feat_channels, self.mask_head.head.num_gen_params,
kernel_size=3, stride=1, padding=1
)
torch.nn.init.normal_(self.controller.weight, std=0.01)
torch.nn.init.constant_(self.controller.bias, 0)
def _init_layers(self):
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
self.shared_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
for i in range(self.shared_stacked_convs):
self.shared_convs.append(
ConvModule(
self.feat_channels,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.hem_tl = TLPool(self.feat_channels, self.conv_cfg, self.norm_cfg, first_kernel_size=self.first_kernel_size, kernel_size=self.kernel_size, corner_dim=self.corner_dim)
self.hem_br = BRPool(self.feat_channels, self.conv_cfg, self.norm_cfg, first_kernel_size=self.first_kernel_size, kernel_size=self.kernel_size, corner_dim=self.corner_dim)
pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
cls_in_channels = self.feat_channels + 6
self.reppoints_cls_conv = DeformConv2d(cls_in_channels,
self.point_feat_channels,
self.dcn_kernel, 1, self.dcn_pad)
self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
self.cls_out_channels, 1, 1, 0)
self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
self.point_feat_channels, 3, 1, 1)
self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
pts_out_dim, 1, 1, 0)
pts_in_channels = self.feat_channels + 6
self.reppoints_pts_refine_conv = DeformConv2d(pts_in_channels,
self.point_feat_channels,
self.dcn_kernel, 1,
self.dcn_pad)
self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
pts_out_dim, 1, 1, 0)
self.reppoints_hem_tl_score_out = nn.Conv2d(self.feat_channels, 1, 3, 1, 1)
self.reppoints_hem_br_score_out = nn.Conv2d(self.feat_channels, 1, 3, 1, 1)
self.reppoints_hem_tl_offset_out = nn.Conv2d(self.feat_channels, 2, 3, 1, 1)
self.reppoints_hem_br_offset_out = nn.Conv2d(self.feat_channels, 2, 3, 1, 1)
self.reppoints_sem_out = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1, 1, 0)
self.reppoints_sem_embedding = ConvModule(
self.feat_channels,
self.feat_channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg)
def init_weights(self):
"""Initialize weights of the head."""
for m in self.cls_convs:
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
normal_init(m.conv, std=0.01)
for m in self.shared_convs:
normal_init(m.conv, std=0.01)
bias_cls = bias_init_with_prob(0.01)
normal_init(self.reppoints_cls_conv, std=0.01)
normal_init(self.reppoints_cls_out, std=0.01, bias=bias_cls)
normal_init(self.reppoints_pts_init_conv, std=0.01)
normal_init(self.reppoints_pts_init_out, std=0.01)
normal_init(self.reppoints_pts_refine_conv, std=0.01)
normal_init(self.reppoints_pts_refine_out, std=0.01)
normal_init(self.reppoints_hem_tl_score_out, std=0.01, bias=bias_cls)
normal_init(self.reppoints_hem_tl_offset_out, std=0.01)
normal_init(self.reppoints_hem_br_score_out, std=0.01, bias=bias_cls)
normal_init(self.reppoints_hem_br_offset_out, std=0.01)
normal_init(self.reppoints_sem_out, std=0.01, bias=bias_cls)
def points2bbox(self, pts, y_first=True):
"""Converting the points set into bounding box.
:param pts: the input points sets (fields), each points
set (fields) is represented as 2n scalar.
:param y_first: if y_fisrt=True, the point set is represented as
[y1, x1, y2, x2 ... yn, xn], otherwise the point set is
represented as [x1, y1, x2, y2 ... xn, yn].
:return: each points set is converting to a bbox [x1, y1, x2, y2].
"""
pts_reshape = pts.view(pts.shape[0], -1, 2, *pts.shape[2:])
pts_y = pts_reshape[:, :, 0, ...] if y_first else pts_reshape[:, :, 1, ...]
pts_x = pts_reshape[:, :, 1, ...] if y_first else pts_reshape[:, :, 0, ...]
if self.transform_method == 'minmax':
bbox_left = pts_x.min(dim=1, keepdim=True)[0]
bbox_right = pts_x.max(dim=1, keepdim=True)[0]
bbox_up = pts_y.min(dim=1, keepdim=True)[0]
bbox_bottom = pts_y.max(dim=1, keepdim=True)[0]
bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom],
dim=1)
elif self.transform_method == 'partial_minmax':
pts_y = pts_y[:, :4, ...]
pts_x = pts_x[:, :4, ...]
bbox_left = pts_x.min(dim=1, keepdim=True)[0]
bbox_right = pts_x.max(dim=1, keepdim=True)[0]
bbox_up = pts_y.min(dim=1, keepdim=True)[0]
bbox_bottom = pts_y.max(dim=1, keepdim=True)[0]
bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom],
dim=1)
elif self.transform_method == 'moment':
pts_y_mean = pts_y.mean(dim=1, keepdim=True)
pts_x_mean = pts_x.mean(dim=1, keepdim=True)
pts_y_std = torch.std(pts_y - pts_y_mean, dim=1, keepdim=True)
pts_x_std = torch.std(pts_x - pts_x_mean, dim=1, keepdim=True)
moment_transfer = (self.moment_transfer * self.moment_mul) + (
self.moment_transfer.detach() * (1 - self.moment_mul))
moment_width_transfer = moment_transfer[0]
moment_height_transfer = moment_transfer[1]
half_width = pts_x_std * torch.exp(moment_width_transfer)
half_height = pts_y_std * torch.exp(moment_height_transfer)
bbox = torch.cat([
pts_x_mean - half_width, pts_y_mean - half_height,
pts_x_mean + half_width, pts_y_mean + half_height
],
dim=1)
elif self.transform_method == "exact_minmax":
pts_reshape = pts.view(pts.shape[0], -1, 2, *pts.shape[2:])
pts_reshape = pts_reshape[:, :2, ...]
pts_y = pts_reshape[:, :, 0, ...] if y_first else pts_reshape[:, :, 1, ...]
pts_x = pts_reshape[:, :, 1, ...] if y_first else pts_reshape[:, :, 0, ...]
bbox_left = pts_x[:, 0:1, ...]
bbox_right = pts_x[:, 1:2, ...]
bbox_up = pts_y[:, 0:1, ...]
bbox_bottom = pts_y[:, 1:2, ...]
bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom], dim=1)
else:
raise NotImplementedError
return bbox
def gen_grid_from_reg(self, reg, previous_boxes):
"""Base on the previous bboxes and regression values, we compute the
regressed bboxes and generate the grids on the bboxes.
:param reg: the regression value to previous bboxes.
:param previous_boxes: previous bboxes.
:return: generate grids on the regressed bboxes.
"""
b, _, h, w = reg.shape
bxy = (previous_boxes[:, :2, ...] + previous_boxes[:, 2:, ...]) / 2.
bwh = (previous_boxes[:, 2:, ...] -
previous_boxes[:, :2, ...]).clamp(min=1e-6)
grid_topleft = bxy + bwh * reg[:, :2, ...] - 0.5 * bwh * torch.exp(
reg[:, 2:, ...])
grid_wh = bwh * torch.exp(reg[:, 2:, ...])
grid_left = grid_topleft[:, [0], ...]
grid_top = grid_topleft[:, [1], ...]
grid_width = grid_wh[:, [0], ...]
grid_height = grid_wh[:, [1], ...]
intervel = torch.linspace(0., 1., self.dcn_kernel).view(
1, self.dcn_kernel, 1, 1).type_as(reg)
grid_x = grid_left + grid_width * intervel
grid_x = grid_x.unsqueeze(1).repeat(1, self.dcn_kernel, 1, 1, 1)
grid_x = grid_x.view(b, -1, h, w)
grid_y = grid_top + grid_height * intervel
grid_y = grid_y.unsqueeze(2).repeat(1, 1, self.dcn_kernel, 1, 1)
grid_y = grid_y.view(b, -1, h, w)
grid_yx = torch.stack([grid_y, grid_x], dim=2)
grid_yx = grid_yx.view(b, -1, h, w)
regressed_bbox = torch.cat([
grid_left, grid_top, grid_left + grid_width, grid_top + grid_height
], 1)
return grid_yx, regressed_bbox
def compute_coord_pos(self, points):
# points: N, HW, C
x, y = points[..., 0::2], points[..., 1::2]
out_x, out_y = None, None
if self.coord_pos == 'center':
out_x, out_y = x.mean(-1), y.mean(-1)
else:
assert 0
return torch.stack([out_x.flatten(), out_y.flatten()], dim=-1)
def forward(self, feats):
if not self.mask_head:
return multi_apply(self.forward_single, feats)
else:
self.pred_instances = Instances((0,0)) # just a dumy image shape
bbox_res = multi_apply(self.forward_single, feats, controller=self.controller) # cls_out, pts_out_init, pts_out_refine, controller_out
device = bbox_res[1][0].device
self.level_sum = tuple(accumulate([0]+[r[:,0].numel() for r in bbox_res[1]][:-1]))
self.image_sum = torch.tensor([r[0,0].numel() for r in bbox_res[1]])
self.pred_instances.fpn_levels = torch.cat([torch.tensor([i]*r[:,0].numel()).to(device) for i,r in enumerate(bbox_res[1])])
self.pred_instances.im_inds = torch.cat([torch.cat([torch.tensor([i]*img.numel()).to(device) for i,img in enumerate(r[:,0])]) for r in bbox_res[1]])
pts_grid = torch.cat([compute_locations(*r.shape[-2:], self.point_strides[level], device).reshape(-1,2).repeat(len(r),1) for level, r in enumerate(bbox_res[1])], dim=0)
pts_center_list = []
for i_lvl in range(len(self.point_strides)):
pts_shift = bbox_res[1][i_lvl]
pts_shift = pts_shift.permute(0, 2, 3, 1)
yx_pts_shift = pts_shift.reshape(*pts_shift.shape[:-1], 2 * self.num_points)
y_pts_shift = yx_pts_shift[..., 0::2]
x_pts_shift = yx_pts_shift[..., 1::2]
xy_pts_shift = torch.stack([x_pts_shift, y_pts_shift], -1)
pts = xy_pts_shift * self.point_strides[i_lvl] # N, H, W, np, 2
pts_center = pts.mean(-2)
pts_center_list.append(pts_center)
self.pred_instances.locations = torch.cat([l.flatten(0, -2) for l in pts_center_list]) + pts_grid
self.pred_instances.mask_head_params = torch.cat([r.permute(0,2,3,1).flatten(0,-2) for r in bbox_res[-1]])
return bbox_res[:-1]
def forward_single(self, x, controller=None):
""" Forward feature map of a single FPN level."""
dcn_base_offset = self.dcn_base_offset.type_as(x)
# If we use center_init, the initial reppoints is from center points.
# If we use bounding bbox representation, the initial reppoints is
# from regular grid placed on a pre-defined bbox.
if self.use_grid_points or not self.center_init:
scale = self.point_base_scale / 2
points_init = dcn_base_offset / dcn_base_offset.max() * scale
bbox_init = x.new_tensor([-scale, -scale, scale,
scale]).view(1, 4, 1, 1)
else:
points_init = 0
cls_feat = x
pts_feat = x
for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs:
pts_feat = reg_conv(pts_feat)
shared_feat = pts_feat
for shared_conv in self.shared_convs:
shared_feat = shared_conv(shared_feat)
sem_feat = shared_feat
hem_feat = shared_feat
sem_scores_out = self.reppoints_sem_out(sem_feat)
sem_feat = self.reppoints_sem_embedding(sem_feat)
cls_feat = cls_feat + sem_feat
pts_feat = pts_feat + sem_feat
hem_feat = hem_feat + sem_feat
# generate heatmap and offset
hem_tl_feat = self.hem_tl(hem_feat)
hem_br_feat = self.hem_br(hem_feat)
hem_tl_score_out = self.reppoints_hem_tl_score_out(hem_tl_feat)
hem_tl_offset_out = self.reppoints_hem_tl_offset_out(hem_tl_feat)
hem_br_score_out = self.reppoints_hem_br_score_out(hem_br_feat)
hem_br_offset_out = self.reppoints_hem_br_offset_out(hem_br_feat)
hem_score_out = torch.cat([hem_tl_score_out, hem_br_score_out], dim=1)
hem_offset_out = torch.cat([hem_tl_offset_out, hem_br_offset_out], dim=1)
# initialize reppoints
# pts_out_init = self.reppoints_pts_init_out(self.relu(self.reppoints_pts_init_conv(pts_feat)))
init_reg_tower = self.relu(self.reppoints_pts_init_conv(pts_feat))
pts_out_init = self.reppoints_pts_init_out(init_reg_tower)
if self.controller_on == 'init':
controller_out = controller(init_reg_tower)
if self.use_grid_points:
pts_out_init, bbox_out_init = self.gen_grid_from_reg(pts_out_init, bbox_init.detach())
else:
pts_out_init = pts_out_init + points_init
# refine and classify reppoints
pts_out_init_grad_mul = (1 - self.gradient_mul) * pts_out_init.detach() + self.gradient_mul * pts_out_init
dcn_offset = pts_out_init_grad_mul - dcn_base_offset
hem_feat = torch.cat([hem_score_out, hem_offset_out], dim=1)
cls_feat = torch.cat([cls_feat, hem_feat], dim=1)
pts_feat = torch.cat([pts_feat, hem_feat], dim=1)
cls_tower = self.relu(self.reppoints_cls_conv(cls_feat, dcn_offset))
cls_out = self.reppoints_cls_out(cls_tower)
if self.mask_head and controller is not None and self.controller_on == 'cls':
controller_out = controller(cls_tower)
refine_reg_tower = self.relu(self.reppoints_pts_refine_conv(pts_feat, dcn_offset))
pts_out_refine = self.reppoints_pts_refine_out(refine_reg_tower)
if self.controller_on == 'refine':
controller_out = controller(refine_reg_tower)
if self.use_grid_points:
pts_out_refine, bbox_out_refine = self.gen_grid_from_reg(pts_out_refine, bbox_out_init.detach())
else:
pts_out_refine = pts_out_refine + pts_out_init.detach()
if self.mask_head:
return cls_out, pts_out_init, pts_out_refine, hem_score_out, hem_offset_out, sem_scores_out, controller_out
else:
return cls_out, pts_out_init, pts_out_refine, hem_score_out, hem_offset_out, sem_scores_out
def get_points(self, featmap_sizes, img_metas):
"""Get points according to feature map sizes.
Args:
featmap_sizes (list[tuple]): Multi-level feature map sizes.
img_metas (list[dict]): Image meta info.
Returns:
tuple: points of each image, valid flags of each image
"""
num_imgs = len(img_metas)
num_levels = len(featmap_sizes)
# since feature map sizes of all images are the same, we only compute
# points center for one time
multi_level_points = []
for i in range(num_levels):
points = self.point_generators[i].grid_points(
featmap_sizes[i], self.point_strides[i])
multi_level_points.append(points)
points_list = [[point.clone() for point in multi_level_points] for _ in range(num_imgs)]
# for each image, we compute valid flags of multi level grids
valid_flag_list = []
for img_id, img_meta in enumerate(img_metas):
multi_level_flags = []
for i in range(num_levels):
point_stride = self.point_strides[i]
feat_h, feat_w = featmap_sizes[i]
h, w = img_meta['pad_shape'][:2]
valid_feat_h = min(int(np.ceil(h / point_stride)), feat_h)
valid_feat_w = min(int(np.ceil(w / point_stride)), feat_w)
flags = self.point_generators[i].valid_flags(
(feat_h, feat_w), (valid_feat_h, valid_feat_w))
multi_level_flags.append(flags)
valid_flag_list.append(multi_level_flags)
return points_list, valid_flag_list
def centers_to_bboxes(self, point_list):
"""Get bboxes according to center points. Only used in MaxIOUAssigner.
"""
bbox_list = []
for i_img, point in enumerate(point_list):
bbox = []
for i_lvl in range(len(self.point_strides)):
scale = self.point_base_scale * self.point_strides[i_lvl] * 0.5
bbox_shift = torch.Tensor([-scale, -scale, scale, scale]).view(1, 4).type_as(point[0])
bbox_center = torch.cat([point[i_lvl][:, :2], point[i_lvl][:, :2]], dim=1)
bbox.append(bbox_center + bbox_shift)
bbox_list.append(bbox)
return bbox_list
def offset_to_pts(self, center_list, pred_list):
"""Change from point offset to point coordinate."""
pts_list = []
for i_lvl in range(len(self.point_strides)):
pts_lvl = []
for i_img in range(len(center_list)):
pts_center = center_list[i_img][i_lvl][:, :2].repeat(
1, self.num_points)
pts_shift = pred_list[i_lvl][i_img]
yx_pts_shift = pts_shift.permute(1, 2, 0).view(
-1, 2 * self.num_points)
y_pts_shift = yx_pts_shift[..., 0::2]
x_pts_shift = yx_pts_shift[..., 1::2]
xy_pts_shift = torch.stack([x_pts_shift, y_pts_shift], -1)
xy_pts_shift = xy_pts_shift.view(*yx_pts_shift.shape[:-1], -1)
pts = xy_pts_shift * self.point_strides[i_lvl] + pts_center
pts_lvl.append(pts)
pts_lvl = torch.stack(pts_lvl, 0)
pts_list.append(pts_lvl)
return pts_list
def _point_target_single(self,
flat_proposals,
valid_flags,
num_level_proposals,
gt_bboxes,
gt_bboxes_ignore,
gt_labels,
gt_masks=None,
label_channels=1,
stage='init',
unmap_outputs=True):
inside_flags = valid_flags
if not inside_flags.any():
return (None, ) * 6
# assign gt and sample proposals
proposals = flat_proposals[inside_flags, :]
num_level_proposals_inside = self.get_num_level_proposals_inside(num_level_proposals, inside_flags)
if stage == 'init':
assigner = self.init_assigner
assigner_type = self.train_cfg.init.assigner.type
pos_weight = self.train_cfg.init.pos_weight
else:
assigner = self.refine_assigner
assigner_type = self.train_cfg.refine.assigner.type
pos_weight = self.train_cfg.refine.pos_weight
if assigner_type != "ATSSAssignerV2":
assign_result = assigner.assign(proposals, gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks)
else:
assign_result = assigner.assign(proposals, num_level_proposals_inside, gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks)
sampling_result = self.sampler.sample(assign_result, proposals, gt_bboxes)
num_valid_proposals = proposals.shape[0]
bbox_gt = proposals.new_zeros([num_valid_proposals, 4])
bbox_weights = proposals.new_zeros([num_valid_proposals, 4])
labels = proposals.new_full((num_valid_proposals, ), self.background_label, dtype=torch.long)
label_weights = proposals.new_zeros(num_valid_proposals, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
pos_gt_bboxes = sampling_result.pos_gt_bboxes
bbox_gt[pos_inds, :] = pos_gt_bboxes
bbox_weights[pos_inds, :] = 1.0
if gt_labels is None:
labels[pos_inds] = 1
else:
labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
if pos_weight <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = pos_weight
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
# map up to original set of proposals
if unmap_outputs:
num_total_proposals = flat_proposals.size(0)
labels = unmap(labels, num_total_proposals, inside_flags)
label_weights = unmap(label_weights, num_total_proposals, inside_flags)
bbox_gt = unmap(bbox_gt, num_total_proposals, inside_flags)
bbox_weights = unmap(bbox_weights, num_total_proposals, inside_flags)
gt_inds = unmap(
sampling_result.assign_result.gt_inds, num_total_proposals, inside_flags)
return labels, label_weights, bbox_gt, bbox_weights, pos_inds, neg_inds, gt_inds
def get_targets(self,
proposals_list,
valid_flag_list,
gt_bboxes_list,
img_metas,
gt_bboxes_ignore_list=None,
gt_labels_list=None,
stage='init',
label_channels=1,
unmap_outputs=True,
gt_masks=None):
"""Compute corresponding GT box and classification targets for
proposals.
Args:
proposals_list (list[list]): Multi level points/bboxes of each
image.
valid_flag_list (list[list]): Multi level valid flags of each
image.
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
img_metas (list[dict]): Meta info of each image.
gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
ignored.
gt_bboxes_list (list[Tensor]): Ground truth labels of each box.
stage (str): `init` or `refine`. Generate target for init stage or
refine stage
label_channels (int): Channel of label.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Returns:
tuple:
- labels_list (list[Tensor]): Labels of each level.
- label_weights_list (list[Tensor]): Label weights of each level. # noqa: E501
- bbox_gt_list (list[Tensor]): Ground truth bbox of each level.
- proposal_list (list[Tensor]): Proposals(points/bboxes) of each level. # noqa: E501
- proposal_weights_list (list[Tensor]): Proposal weights of each level. # noqa: E501
- num_total_pos (int): Number of positive samples in all images. # noqa: E501
- num_total_neg (int): Number of negative samples in all images. # noqa: E501
"""
assert stage in ['init', 'refine']
num_imgs = len(img_metas)
assert len(proposals_list) == len(valid_flag_list) == num_imgs
# points number of multi levels
num_level_proposals = [points.size(0) for points in proposals_list[0]]
num_level_proposals_list = [num_level_proposals] * num_imgs
# concat all level points and flags to a single tensor
for i in range(num_imgs):
assert len(proposals_list[i]) == len(valid_flag_list[i])
proposals_list[i] = torch.cat(proposals_list[i])
valid_flag_list[i] = torch.cat(valid_flag_list[i])
# compute targets for each image
if gt_bboxes_ignore_list is None:
gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
if gt_labels_list is None:
gt_labels_list = [None for _ in range(num_imgs)]
(all_labels, all_label_weights, all_bbox_gt, all_bbox_weights,
pos_inds_list, neg_inds_list, gt_inds) = multi_apply(
self._point_target_single,
proposals_list,
valid_flag_list,
num_level_proposals_list,
gt_bboxes_list,
gt_bboxes_ignore_list,
gt_labels_list,
gt_masks if self.mask_head else [None] * len(proposals_list),
stage=stage,
label_channels=label_channels,
unmap_outputs=unmap_outputs)
# no valid points
if any([labels is None for labels in all_labels]):
return None
# sampled points of all images
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
labels_list = images_to_levels(all_labels, num_level_proposals)
label_weights_list = images_to_levels(all_label_weights, num_level_proposals)
bbox_gt_list = images_to_levels(all_bbox_gt, num_level_proposals)
bbox_weights_list = images_to_levels(all_bbox_weights,
num_level_proposals)
shift_gt_inds = [] # shift gt_inds by previous mask number
if self.mask_head:
for gt_ind,nsum in zip(gt_inds,self.masknum_sum):
gt_ind[gt_ind>0] += nsum
shift_gt_inds.append(gt_ind)
shift_gt_inds = images_to_levels(shift_gt_inds, num_level_proposals)
return (labels_list, label_weights_list, bbox_gt_list, bbox_weights_list,
num_total_pos, num_total_neg, shift_gt_inds)
def _hm_target_single(self,
flat_points,
inside_flags,
gt_bboxes,
gt_labels,
unmap_outputs=True):
# assign gt and sample points
if not inside_flags.any():
return (None, ) * 12
points = flat_points[inside_flags, :]
assigner = self.hm_assigner
gt_hm_tl, gt_offset_tl, pos_inds_tl, neg_inds_tl, \
gt_hm_br, gt_offset_br, pos_inds_br, neg_inds_br = \
assigner.assign(points, gt_bboxes, gt_labels)
num_valid_points = points.shape[0]
hm_tl_weights = points.new_zeros(num_valid_points, dtype=torch.float)
hm_br_weights = points.new_zeros(num_valid_points, dtype=torch.float)
offset_tl_weights = points.new_zeros([num_valid_points, 2], dtype=torch.float)
offset_br_weights = points.new_zeros([num_valid_points, 2], dtype=torch.float)
hm_tl_weights[pos_inds_tl] = 1.0
hm_tl_weights[neg_inds_tl] = 1.0
offset_tl_weights[pos_inds_tl, :] = 1.0
hm_br_weights[pos_inds_br] = 1.0
hm_br_weights[neg_inds_br] = 1.0
offset_br_weights[pos_inds_br, :] = 1.0
# map up to original set of grids
if unmap_outputs:
num_total_points = flat_points.shape[0]
gt_hm_tl = unmap(gt_hm_tl, num_total_points, inside_flags)
gt_offset_tl = unmap(gt_offset_tl, num_total_points, inside_flags)
hm_tl_weights = unmap(hm_tl_weights, num_total_points, inside_flags)
offset_tl_weights = unmap(offset_tl_weights, num_total_points, inside_flags)
gt_hm_br = unmap(gt_hm_br, num_total_points, inside_flags)
gt_offset_br = unmap(gt_offset_br, num_total_points, inside_flags)
hm_br_weights = unmap(hm_br_weights, num_total_points, inside_flags)
offset_br_weights = unmap(offset_br_weights, num_total_points, inside_flags)
return (gt_hm_tl, gt_offset_tl, hm_tl_weights, offset_tl_weights, pos_inds_tl, neg_inds_tl,
gt_hm_br, gt_offset_br, hm_br_weights, offset_br_weights, pos_inds_br, neg_inds_br)
def get_hm_targets(self,
proposals_list,
valid_flag_list,
gt_bboxes_list,
img_metas,
gt_labels_list=None,
unmap_outputs=True):
"""Compute refinement and classification targets for points.
Args:
points_list (list[list]): Multi level points of each image.
valid_flag_list (list[list]): Multi level valid flags of each image.
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
img_metas (list[dict]): Meta info of each image.
cfg (dict): train sample configs.
Returns:
tuple
"""
num_imgs = len(img_metas)
assert len(proposals_list) == len(valid_flag_list) == num_imgs
# points number of multi levels
num_level_proposals = [points.size(0) for points in proposals_list[0]]
# concat all level points and flags to a single tensor
for i in range(len(proposals_list)):
assert len(proposals_list[i]) == len(valid_flag_list[i])
proposals_list[i] = torch.cat(proposals_list[i])
valid_flag_list[i] = torch.cat(valid_flag_list[i])
if gt_labels_list is None:
gt_labels_list = [None for _ in range(num_imgs)]
(all_gt_hm_tl, all_gt_offset_tl, all_hm_tl_weights, all_offset_tl_weights, pos_inds_tl_list, neg_inds_tl_list,
all_gt_hm_br, all_gt_offset_br, all_hm_br_weights, all_offset_br_weights, pos_inds_br_list, neg_inds_br_list) = \
multi_apply(
self._hm_target_single,
proposals_list,
valid_flag_list,
gt_bboxes_list,
gt_labels_list,
unmap_outputs=unmap_outputs)
# no valid points
if any([gt_hm_tl is None for gt_hm_tl in all_gt_hm_tl]):
return None
# sampled points of all images
num_total_pos_tl = sum([max(inds.numel(), 1) for inds in pos_inds_tl_list])
num_total_neg_tl = sum([max(inds.numel(), 1) for inds in neg_inds_tl_list])
num_total_pos_br = sum([max(inds.numel(), 1) for inds in pos_inds_br_list])
num_total_neg_br = sum([max(inds.numel(), 1) for inds in neg_inds_br_list])
gt_hm_tl_list = images_to_levels(all_gt_hm_tl, num_level_proposals)
gt_offset_tl_list = images_to_levels(all_gt_offset_tl, num_level_proposals)
hm_tl_weight_list = images_to_levels(all_hm_tl_weights, num_level_proposals)
offset_tl_weight_list = images_to_levels(all_offset_tl_weights, num_level_proposals)
gt_hm_br_list = images_to_levels(all_gt_hm_br, num_level_proposals)
gt_offset_br_list = images_to_levels(all_gt_offset_br, num_level_proposals)
hm_br_weight_list = images_to_levels(all_hm_br_weights, num_level_proposals)
offset_br_weight_list = images_to_levels(all_offset_br_weights, num_level_proposals)
return (gt_hm_tl_list, gt_offset_tl_list, hm_tl_weight_list, offset_tl_weight_list,
gt_hm_br_list, gt_offset_br_list, hm_br_weight_list, offset_br_weight_list,
num_total_pos_tl, num_total_neg_tl, num_total_pos_br, num_total_neg_br)
def loss_single(self, cls_score, pts_pred_init, pts_pred_refine, hm_score, hm_offset,
labels, label_weights,
bbox_gt_init, bbox_weights_init,
bbox_gt_refine, bbox_weights_refine,
gt_hm_tl, gt_offset_tl, gt_hm_tl_weight, gt_offset_tl_weight,
gt_hm_br, gt_offset_br, gt_hm_br_weight, gt_offset_br_weight,
stride,
num_total_samples_init, num_total_samples_refine,
num_total_samples_tl, num_total_samples_br):
# classification loss
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
# points loss
bbox_gt_init = bbox_gt_init.reshape(-1, 4)
bbox_weights_init = bbox_weights_init.reshape(-1, 4)
bbox_pred_init = self.points2bbox(pts_pred_init.reshape(-1, 2 * self.num_points), y_first=False)
bbox_gt_refine = bbox_gt_refine.reshape(-1, 4)
bbox_weights_refine = bbox_weights_refine.reshape(-1, 4)
bbox_pred_refine = self.points2bbox(pts_pred_refine.reshape(-1, 2 * self.num_points), y_first=False)
normalize_term = self.point_base_scale * stride
loss_pts_init = self.loss_bbox_init(
bbox_pred_init / normalize_term,
bbox_gt_init / normalize_term,
bbox_weights_init,
avg_factor=num_total_samples_init)
loss_pts_refine = self.loss_bbox_refine(
bbox_pred_refine / normalize_term,
bbox_gt_refine / normalize_term,
bbox_weights_refine,
avg_factor=num_total_samples_refine)
#cls loss
if hasattr(self.loss_cls,'requires_box') :
loss_cls = self.loss_cls(cls_score,labels, label_weights, bbox_pred_refine,bbox_gt_refine,bbox_weights_refine,background_label=self.background_label,avg_factor=num_total_samples_refine)
else:
loss_cls = self.loss_cls(
cls_score, labels, label_weights, avg_factor=num_total_samples_refine)
# heatmap cls loss
hm_score = hm_score.permute(0, 2, 3, 1).reshape(-1, 2)
hm_score_tl, hm_score_br = torch.chunk(hm_score, 2, dim=-1)
hm_score_tl = hm_score_tl.squeeze(1).sigmoid()
hm_score_br = hm_score_br.squeeze(1).sigmoid()
gt_hm_tl = gt_hm_tl.reshape(-1)
gt_hm_tl_weight = gt_hm_tl_weight.reshape(-1)
gt_hm_br = gt_hm_br.reshape(-1)
gt_hm_br_weight = gt_hm_br_weight.reshape(-1)
loss_heatmap = 0
loss_heatmap += self.loss_heatmap(
hm_score_tl, gt_hm_tl, gt_hm_tl_weight, avg_factor=num_total_samples_tl
)
loss_heatmap += self.loss_heatmap(
hm_score_br, gt_hm_br, gt_hm_br_weight, avg_factor=num_total_samples_br
)
loss_heatmap /= 2.0
# heatmap offset loss
hm_offset = hm_offset.permute(0, 2, 3, 1).reshape(-1, 4)
hm_offset_tl, hm_offset_br = torch.chunk(hm_offset, 2, dim=-1)
gt_offset_tl = gt_offset_tl.reshape(-1, 2)
gt_offset_tl_weight = gt_offset_tl_weight.reshape(-1, 2)
gt_offset_br = gt_offset_br.reshape(-1, 2)
gt_offset_br_weight = gt_offset_br_weight.reshape(-1, 2)
loss_offset = 0
loss_offset += self.loss_offset(
hm_offset_tl, gt_offset_tl, gt_offset_tl_weight,
avg_factor=num_total_samples_tl
)
loss_offset += self.loss_offset(
hm_offset_br, gt_offset_br, gt_offset_br_weight,
avg_factor=num_total_samples_br
)
loss_offset /= 2.0
return loss_cls, loss_pts_init, loss_pts_refine, loss_heatmap, loss_offset
def loss(self,
cls_scores,
pts_preds_init,
pts_preds_refine,
hm_scores,
hm_offsets,
sem_scores,
gt_bboxes,
gt_sem_map,
gt_sem_weights,
gt_labels,
img_metas,
gt_bboxes_ignore=None,
gt_masks=None):
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == len(self.point_generators)
label_channels = self.cls_out_channels
# target for initial stage
# stride affect
center_list, valid_flag_list = self.get_points(featmap_sizes, img_metas)
pts_coordinate_preds_init = self.offset_to_pts(center_list, pts_preds_init)
if self.train_cfg.init.assigner['type'] != 'MaxIoUAssigner':
# Assign target for center list
candidate_list = center_list
else:
# transform center list to bbox list and
# assign target for bbox list
bbox_list = self.centers_to_bboxes(center_list)
candidate_list = bbox_list
cls_reg_targets_init = self.get_targets(
candidate_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
stage='init',
label_channels=label_channels,
gt_masks=gt_masks)
(*_, bbox_gt_list_init, bbox_weights_list_init,
num_total_pos_init, num_total_neg_init, gt_inds) = cls_reg_targets_init
# target for heatmap in initial stage
# stride affect
proposal_list, valid_flag_list = self.get_points(featmap_sizes, img_metas)
heatmap_targets = self.get_hm_targets(
proposal_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_labels)
(gt_hm_tl_list, gt_offset_tl_list, gt_hm_tl_weight_list, gt_offset_tl_weight_list,
gt_hm_br_list, gt_offset_br_list, gt_hm_br_weight_list, gt_offset_br_weight_list,
num_total_pos_tl, num_total_neg_tl, num_total_pos_br, num_total_neg_br) = heatmap_targets
# target for refinement stage
center_list, valid_flag_list = self.get_points(featmap_sizes, img_metas) #[x,y,stride]
pts_coordinate_preds_refine = self.offset_to_pts(center_list, pts_preds_refine)
bbox_list = []
for i_img, center in enumerate(center_list):
bbox = []
for i_lvl in range(len(pts_preds_refine)):
bbox_preds_init = self.points2bbox(
pts_preds_init[i_lvl].detach())
bbox_shift = bbox_preds_init * self.point_strides[i_lvl]
bbox_center = torch.cat([center[i_lvl][:, :2], center[i_lvl][:, :2]], dim=1) # no stride
bbox.append(bbox_center + bbox_shift[i_img].permute(1, 2, 0).reshape(-1, 4))
bbox_list.append(bbox)
cls_reg_targets_refine = self.get_targets(
bbox_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
stage='refine',
label_channels=label_channels,
gt_masks=gt_masks)
(labels_list, label_weights_list,
bbox_gt_list_refine, bbox_weights_list_refine,
num_total_pos_refine, num_total_neg_refine, gt_inds) = cls_reg_targets_refine
if self.mask_head:
def get_shape(boxes):
return torch.stack((boxes[:,2]-boxes[:,0], boxes[:,3]-boxes[:,1]), axis=-1)
self.pred_instances.gt_inds = torch.cat([torch.flatten(gt_ind) for gt_ind in gt_inds])
# norm by gt box, size=(W,H)
self.pred_instances.boxsz = torch.cat([get_shape(gt_bbox.reshape(-1,4)) for gt_bbox in bbox_gt_list_refine])
# norm by pred box, size=(W,H)
# bbox_pred_refine = [self.points2bbox(pts.reshape(-1, 2 * self.num_points), y_first=False) for pts in pts_coordinate_preds_refine]
# self.pred_instances.boxsz = torch.cat([get_shape(bbox.reshape(-1,4)) for bbox in bbox_pred_refine])
# compute loss
losses_cls, losses_pts_init, losses_pts_refine, losses_heatmap, losses_offset = multi_apply(
self.loss_single,
cls_scores,
pts_coordinate_preds_init,
pts_coordinate_preds_refine,
hm_scores,
hm_offsets,
labels_list,
label_weights_list,
bbox_gt_list_init,
bbox_weights_list_init,
bbox_gt_list_refine,
bbox_weights_list_refine,
gt_hm_tl_list,
gt_offset_tl_list,
gt_hm_tl_weight_list,
gt_offset_tl_weight_list,
gt_hm_br_list,
gt_offset_br_list,
gt_hm_br_weight_list,
gt_offset_br_weight_list,
self.point_strides,
num_total_samples_init=num_total_pos_init,
num_total_samples_refine=num_total_pos_refine,
num_total_samples_tl=num_total_pos_tl,
num_total_samples_br=num_total_pos_br)
# sem loss
concat_sem_scores = []
concat_gt_sem_map = []
concat_gt_sem_weights = []
for i in range(5):
sem_score = sem_scores[i]
gt_lvl_sem_map = F.interpolate(gt_sem_map, sem_score.shape[-2:]).reshape(-1)
gt_lvl_sem_weight = F.interpolate(gt_sem_weights, sem_score.shape[-2:]).reshape(-1)
sem_score = sem_score.reshape(-1)
try:
concat_sem_scores = torch.cat([concat_sem_scores, sem_score])
concat_gt_sem_map = torch.cat([concat_gt_sem_map, gt_lvl_sem_map])
concat_gt_sem_weights = torch.cat([concat_gt_sem_weights, gt_lvl_sem_weight])
except:
concat_sem_scores = sem_score
concat_gt_sem_map = gt_lvl_sem_map
concat_gt_sem_weights = gt_lvl_sem_weight
loss_sem = self.loss_sem(concat_sem_scores, concat_gt_sem_map, concat_gt_sem_weights, avg_factor=(concat_gt_sem_map > 0).sum())
loss_dict_all = {'loss_cls': losses_cls,
'loss_pts_init': losses_pts_init,
'loss_pts_refine': losses_pts_refine,
'loss_heatmap': losses_heatmap,
'loss_offset': losses_offset,
'loss_sem': loss_sem,
}
return loss_dict_all
def get_bboxes(self,
cls_scores,
pts_preds_init,
pts_preds_refine,
hm_scores,
hm_offsets,
sem_scores,
img_metas,
cfg=None,
rescale=False,
nms=True):
assert len(cls_scores) == len(pts_preds_refine)
bbox_preds_refine = [self.points2bbox(pts_pred_refine) for pts_pred_refine in pts_preds_refine]
num_levels = len(cls_scores)
mlvl_points = [
self.point_generators[i].grid_points(cls_scores[i].size()[-2:],
self.point_strides[i])
for i in range(num_levels)
]
result_list = []
for img_id in range(len(img_metas)):
cls_score_list = [
cls_scores[i][img_id].detach() for i in range(num_levels)
]
bbox_pred_list = [
bbox_preds_refine[i][img_id].detach() for i in range(num_levels)
]
hm_scores_list = [
hm_scores[i][img_id].detach() for i in range(num_levels)
]
hm_offsets_list = [
hm_offsets[i][img_id].detach() for i in range(num_levels)
]
img_shape = img_metas[img_id]['img_shape']
scale_factor = img_metas[img_id]['scale_factor']
proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list, hm_scores_list, hm_offsets_list,
mlvl_points, img_shape,
scale_factor, cfg, rescale,
nms, imid_shift=self.image_sum*img_id if self.mask_head else 0)
result_list.append(proposals)
return result_list
def _get_bboxes_single(self,
cls_scores,
bbox_preds,
hm_scores,
hm_offsets,
mlvl_points,
img_shape,
scale_factor,
cfg,
rescale=False,
nms=True,
imid_shift=0):
def select(score_map, x, y, ks=2, i=0):
H, W = score_map.shape[-2], score_map.shape[-1]
score_map = score_map.sigmoid()
score_map_original = score_map.clone()
score_map, indices = F.max_pool2d_with_indices(score_map.unsqueeze(0), kernel_size=ks, stride=1, padding=(ks - 1) // 2)
indices = indices.squeeze(0).squeeze(0)
if ks % 2 == 0:
round_func = torch.floor
else:
round_func = torch.round
x_round = round_func((x / self.point_strides[i]).clamp(min=0, max=score_map.shape[-1] - 1))
y_round = round_func((y / self.point_strides[i]).clamp(min=0, max=score_map.shape[-2] - 1))
select_indices = indices[y_round.to(torch.long), x_round.to(torch.long)]
new_x = select_indices % W
new_y = select_indices // W
score_map_squeeze = score_map_original.squeeze(0)
score = score_map_squeeze[new_y, new_x]
new_x, new_y = new_x.to(torch.float), new_y.to(torch.float)
return new_x, new_y, score
cfg = self.test_cfg if cfg is None else cfg
assert len(cls_scores) == len(bbox_preds) == len(mlvl_points)
mlvl_bboxes = []
mlvl_scores = []
inst_inds = [] if self.mask_head else None
for i_lvl, (cls_score, bbox_pred, points) in enumerate(zip(cls_scores, bbox_preds, mlvl_points)):
if self.mask_head:
inst_ind = torch.arange(cls_score.shape[-2]*cls_score.shape[-1], device=cls_score.device) + self.level_sum[i_lvl] + imid_shift[i_lvl]
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
scores = cls_score.permute(1, 2, 0).reshape(-1, self.cls_out_channels).sigmoid()
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
nms_pre = cfg.get('nms_pre', -1)
if nms_pre > 0 and scores.shape[0] > nms_pre:
max_scores, _ = scores.max(dim=1)
_, topk_inds = max_scores.topk(nms_pre)
points = points[topk_inds, :]
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
if self.mask_head:
inst_ind = inst_ind[topk_inds]
bbox_pos_center = torch.cat([points[:, :2], points[:, :2]], dim=1)
bboxes = bbox_pred * self.point_strides[i_lvl] + bbox_pos_center
x1 = bboxes[:, 0].clamp(min=0, max=img_shape[1])
y1 = bboxes[:, 1].clamp(min=0, max=img_shape[0])
x2 = bboxes[:, 2].clamp(min=0, max=img_shape[1])
y2 = bboxes[:, 3].clamp(min=0, max=img_shape[0])
if self.corner_refine:
if i_lvl > 0:
i = 0 if i_lvl in (1, 2) else 1
x1_new, y1_new, score1_new = select(hm_scores[i][0, ...], x1, y1, 2, i)
x2_new, y2_new, score2_new = select(hm_scores[i][1, ...], x2, y2, 2, i)
hm_offset = hm_offsets[i].permute(1, 2, 0)
point_stride = self.point_strides[i]
x1 = ((x1_new + hm_offset[y1_new.to(torch.long), x1_new.to(torch.long), 0]) * point_stride).clamp(min=0, max=img_shape[1])
y1 = ((y1_new + hm_offset[y1_new.to(torch.long), x1_new.to(torch.long), 1]) * point_stride).clamp(min=0, max=img_shape[0])
x2 = ((x2_new + hm_offset[y2_new.to(torch.long), x2_new.to(torch.long), 2]) * point_stride).clamp(min=0, max=img_shape[1])
y2 = ((y2_new + hm_offset[y2_new.to(torch.long), x2_new.to(torch.long), 3]) * point_stride).clamp(min=0, max=img_shape[0])
bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
if self.mask_head:
inst_inds.append(inst_ind)
if self.mask_head:
inst_inds = torch.cat(inst_inds)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)
if nms:
if self.mask_head:
det_bboxes, det_labels, inst_inds, _ = multiclass_nms_rpd(mlvl_bboxes, mlvl_scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img, inst_inds=inst_inds)
return det_bboxes, det_labels, inst_inds
else:
det_bboxes, det_labels, _ = multiclass_nms_rpd(mlvl_bboxes, mlvl_scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
else:
if self.mask_head:
return mlvl_bboxes, mlvl_scores, inst_inds
else:
return mlvl_bboxes, mlvl_scores
def get_num_level_proposals_inside(self, num_level_proposals, inside_flags):
split_inside_flags = torch.split(inside_flags, num_level_proposals)
num_level_proposals_inside = [
int(flags.sum()) for flags in split_inside_flags
]
return num_level_proposals_inside
def forward_train(self,
x,
img_metas,
gt_bboxes,
gt_labels=None,
gt_bboxes_ignore=None,
gt_sem_map=None,
gt_sem_weights=None,
gt_masks=None,
proposal_cfg=None,
**kwargs):
"""
# NOTE! for condinst only
Args:
x (list[Tensor]): Features from FPN.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes (Tensor): Ground truth bboxes of the image,
shape (num_gts, 4).
gt_labels (Tensor): Ground truth labels of each box,
shape (num_gts,).
gt_bboxes_ignore (Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4).
gt_masks (None | list[Tensor]) : true segmentation masks for each box
used if the architecture supports a segmentation task.
proposal_cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used
Returns:
tuple:
losses: (dict[str, Tensor]): A dictionary of loss components.
proposal_list (list[Tensor]): Proposals of each image.
"""
if gt_masks:
self.masknum_sum = tuple(accumulate([0]+[len(mask) for mask in gt_masks][:-1]))
outs = self(x)
if gt_labels is None:
loss_inputs = outs + (gt_bboxes, gt_sem_map, gt_sem_weights, img_metas)
else:
loss_inputs = outs + (gt_bboxes, gt_sem_map, gt_sem_weights, gt_labels, img_metas)
losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore, gt_masks=gt_masks)
if self.mask_head:
self.pred_instances = self.pred_instances[self.pred_instances.gt_inds > 0] # select only foreground labels
self.pred_instances.gt_inds = self.pred_instances.gt_inds - 1
mask_loss = self.mask_head(x, self.pred_instances, gt_masks, gt_labels)
losses.update(mask_loss)
if proposal_cfg is None:
return losses
else:
proposal_list = self.get_bboxes(*outs, img_metas, cfg=proposal_cfg)
return losses, proposal_list
|