File size: 5,513 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Corruption Benchmarking

## Introduction

We provide tools to test object detection and instance segmentation models on the image corruption benchmark defined in [Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming](https://arxiv.org/abs/1907.07484).
This page provides basic tutorials how to use the benchmark.

```latex
@article{michaelis2019winter,
  title={Benchmarking Robustness in Object Detection:
    Autonomous Driving when Winter is Coming},
  author={Michaelis, Claudio and Mitzkus, Benjamin and
    Geirhos, Robert and Rusak, Evgenia and
    Bringmann, Oliver and Ecker, Alexander S. and
    Bethge, Matthias and Brendel, Wieland},
  journal={arXiv:1907.07484},
  year={2019}
}
```

![image corruption example](../resources/corruptions_sev_3.png)

## About the benchmark

To submit results to the benchmark please visit the [benchmark homepage](https://github.com/bethgelab/robust-detection-benchmark)

The benchmark is modelled after the [imagenet-c benchmark](https://github.com/hendrycks/robustness) which was originally
published in [Benchmarking Neural Network Robustness to Common Corruptions and Perturbations](https://arxiv.org/abs/1903.12261) (ICLR 2019) by Dan Hendrycks and Thomas Dietterich.

The image corruption functions are included in this library but can be installed separately using:

```shell
pip install imagecorruptions
```

Compared to imagenet-c a few changes had to be made to handle images of arbitrary size and greyscale images.
We also modfied the 'motion blur' and 'snow' corruptions to remove dependency from a linux specific library,
which would have to be installed separately otherwise. For details please refer to the [imagecorruptions repository](https://github.com/bethgelab/imagecorruptions).

## Inference with pretrained models

We provide a testing script to evaluate a models performance on any combination of the corruptions provided in the benchmark.

### Test a dataset

- [x] single GPU testing
- [ ] multiple GPU testing
- [ ] visualize detection results

You can use the following commands to test a models performance under the 15 corruptions used in the benchmark.

```shell
# single-gpu testing
python tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
```

Alternatively different group of corruptions can be selected.

```shell
# noise
python tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions noise

# blur
python tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions blur

# wetaher
python tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions weather

# digital
python tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions digital
```

Or a costom set of corruptions e.g.:

```shell
# gaussian noise, zoom blur and snow
python tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --corruptions gaussian_noise zoom_blur snow
```

Finally the corruption severities to evaluate can be chosen.
Severity 0 corresponds to clean data and the effect increases from 1 to 5.

```shell
# severity 1
python tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --severities 1

# severities 0,2,4
python tools/test_robustness.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] --severities 0 2 4
```

## Results for modelzoo models

The results on COCO 2017val are shown in the below table.

Model  | Backbone  | Style   | Lr schd | box AP clean | box AP corr. | box % | mask AP clean | mask AP corr. | mask % |
:-----:|:---------:|:-------:|:-------:|:------------:|:------------:|:-----:|:-------------:|:-------------:|:------:|
Faster R-CNN | R-50-FPN  | pytorch | 1x      | 36.3   | 18.2         | 50.2  | -             | -             | -      |
Faster R-CNN | R-101-FPN | pytorch | 1x      | 38.5   | 20.9         | 54.2  | -             | -             | -      |
Faster R-CNN | X-101-32x4d-FPN | pytorch |1x | 40.1   | 22.3         | 55.5  | -             | -             | -      |
Faster R-CNN | X-101-64x4d-FPN | pytorch |1x | 41.3   | 23.4         | 56.6  | -             | -             | -      |
Faster R-CNN | R-50-FPN-DCN | pytorch | 1x   | 40.0   | 22.4         | 56.1  | -             | -             | -      |
Faster R-CNN | X-101-32x4d-FPN-DCN | pytorch | 1x | 43.4 | 26.7      | 61.6  | -             | -             | -      |
Mask R-CNN   | R-50-FPN  | pytorch | 1x      | 37.3   | 18.7         | 50.1  | 34.2          | 16.8          | 49.1   |
Mask R-CNN   | R-50-FPN-DCN | pytorch | 1x   | 41.1   | 23.3         | 56.7  | 37.2          | 20.7          | 55.7   |
Cascade R-CNN | R-50-FPN  | pytorch | 1x     | 40.4   | 20.1         | 49.7  | -             | -             | -      |
Cascade Mask R-CNN | R-50-FPN  | pytorch | 1x| 41.2   | 20.7         | 50.2  | 35.7          | 17.6          | 49.3   |
RetinaNet    | R-50-FPN  | pytorch | 1x      | 35.6   | 17.8         | 50.1  | -             | -             | -      |
Hybrid Task Cascade | X-101-64x4d-FPN-DCN | pytorch | 1x | 50.6 | 32.7 | 64.7 | 43.8         | 28.1          | 64.0   |

Results may vary slightly due to the stochastic application of the corruptions.