File size: 22,657 Bytes
e26e560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
# 1: Inference and train with existing models and standard datasets
MMDetection provides hundreds of existing and existing detection models in [Model Zoo](https://mmdetection.readthedocs.io/en/latest/model_zoo.html)), and supports multiple standard datasets, including Pascal VOC, COCO, CityScapes, LVIS, etc. This note will show how to perform common tasks on these existing models and standard datasets, including:
- Use existing models to inference on given images.
- Test existing models on standard datasets.
- Train predefined models on standard datasets.
## Inference with existing models
By inference, we mean using trained models to detect objects on images. In MMDetection, a model is defined by a configuration file and existing model parameters are save in a checkpoint file.
To start with, we recommend [Faster RCNN](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn) with this [configuration file](https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py) and this [checkpoint file](http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth). It is recommended to download the checkpoint file to `checkpoints` directory.
### High-level APIs for inference
MMDetection provide high-level Python APIs for inference on images. Here is an example of building the model and inference on given images or videos.
```python
from mmdet.apis import init_detector, inference_detector
import mmcv
# Specify the path to model config and checkpoint file
config_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')
# test a single image and show the results
img = 'test.jpg' # or img = mmcv.imread(img), which will only load it once
result = inference_detector(model, img)
# visualize the results in a new window
model.show_result(img, result)
# or save the visualization results to image files
model.show_result(img, result, out_file='result.jpg')
# test a video and show the results
video = mmcv.VideoReader('video.mp4')
for frame in video:
result = inference_detector(model, frame)
model.show_result(frame, result, wait_time=1)
```
A notebook demo can be found in [demo/inference_demo.ipynb](https://github.com/open-mmlab/mmdetection/blob/master/demo/inference_demo.ipynb).
Note: `inference_detector` only supports single-image inference for now.
### Asynchronous interface - supported for Python 3.7+
For Python 3.7+, MMDetection also supports async interfaces.
By utilizing CUDA streams, it allows not to block CPU on GPU bound inference code and enables better CPU/GPU utilization for single-threaded application. Inference can be done concurrently either between different input data samples or between different models of some inference pipeline.
See `tests/async_benchmark.py` to compare the speed of synchronous and asynchronous interfaces.
```python
import asyncio
import torch
from mmdet.apis import init_detector, async_inference_detector
from mmdet.utils.contextmanagers import concurrent
async def main():
config_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
device = 'cuda:0'
model = init_detector(config_file, checkpoint=checkpoint_file, device=device)
# queue is used for concurrent inference of multiple images
streamqueue = asyncio.Queue()
# queue size defines concurrency level
streamqueue_size = 3
for _ in range(streamqueue_size):
streamqueue.put_nowait(torch.cuda.Stream(device=device))
# test a single image and show the results
img = 'test.jpg' # or img = mmcv.imread(img), which will only load it once
async with concurrent(streamqueue):
result = await async_inference_detector(model, img)
# visualize the results in a new window
model.show_result(img, result)
# or save the visualization results to image files
model.show_result(img, result, out_file='result.jpg')
asyncio.run(main())
```
### Demos
We also provide three demo scripts, implemented with high-level APIs and supporting functionality codes.
Source codes are available [here](https://github.com/open-mmlab/mmdetection/tree/master/demo).
#### Image demo
This script performs inference on a single image.
```shell
python demo/image_demo.py \
${IMAGE_FILE} \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--device ${GPU_ID}] \
[--score-thr ${SCORE_THR}]
```
Examples:
```shell
python demo/image_demo.py demo/demo.jpg \
configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--device cpu
```
#### Webcam demo
This is a live demo from a webcam.
```shell
python demo/webcam_demo.py \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--device ${GPU_ID}] \
[--camera-id ${CAMERA-ID}] \
[--score-thr ${SCORE_THR}]
```
Examples:
```shell
python demo/webcam_demo.py \
configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
```
#### Video demo
This script performs inference on a video.
```shell
python demo/video_demo.py \
${VIDEO_FILE} \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--device ${GPU_ID}] \
[--score-thr ${SCORE_THR}] \
[--out ${OUT_FILE}] \
[--show] \
[--wait-time ${WAIT_TIME}]
```
Examples:
```shell
python demo/video_demo.py demo/demo.mp4 \
configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--out result.mp4
```
## Test existing models on standard datasets
To evaluate a model's accuracy, one usually tests the model on some standard datasets.
MMDetection supports multiple public datasets including COCO, Pascal VOC, CityScapes, and [more](https://github.com/open-mmlab/mmdetection/tree/master/configs/_base_/datasets).
This section will show how to test existing models on supported datasets.
### Prepare datasets
Public datasets like [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/index.html) or mirror and [COCO](https://cocodataset.org/#download) are available from official websites or mirrors. Note: In the detection task, Pascal VOC 2012 is an extension of Pascal VOC 2007 without overlap, and we usually use them together.
It is recommended to download and extract the dataset somewhere outside the project directory and symlink the dataset root to `$MMDETECTION/data` as below.
If your folder structure is different, you may need to change the corresponding paths in config files.
```plain
mmdetection
βββ mmdet
βββ tools
βββ configs
βββ data
β βββ coco
β β βββ annotations
β β βββ train2017
β β βββ val2017
β β βββ test2017
β βββ cityscapes
β β βββ annotations
β β βββ leftImg8bit
β β β βββ train
β β β βββ val
β β βββ gtFine
β β β βββ train
β β β βββ val
β βββ VOCdevkit
β β βββ VOC2007
β β βββ VOC2012
```
Some models require additional [COCO-stuff](http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip) datasets, such as HTC, DetectoRS and SCNet, you can download and unzip then move to the coco folder. The directory should be like this.
```plain
mmdetection
βββ data
β βββ coco
β β βββ annotations
β β βββ train2017
β β βββ val2017
β β βββ test2017
β β βββ stuffthingmaps
```
The [cityscapes](https://www.cityscapes-dataset.com/) annotations need to be converted into the coco format using `tools/dataset_converters/cityscapes.py`:
```shell
pip install cityscapesscripts
python tools/dataset_converters/cityscapes.py \
./data/cityscapes \
--nproc 8 \
--out-dir ./data/cityscapes/annotations
```
TODO: CHANGE TO THE NEW PATH
### Test existing models
We provide testing scripts for evaluating an existing model on the whole dataset (COCO, PASCAL VOC, Cityscapes, etc.).
The following testing environments are supported:
- single GPU
- single node multiple GPUs
- multiple nodes
Choose the proper script to perform testing depending on the testing environment.
```shell
# single-gpu testing
python tools/test.py \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
[--out ${RESULT_FILE}] \
[--eval ${EVAL_METRICS}] \
[--show]
# multi-gpu testing
bash tools/dist_test.sh \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
${GPU_NUM} \
[--out ${RESULT_FILE}] \
[--eval ${EVAL_METRICS}]
```
`tools/dist_test.sh` also supports multi-node testing, but relies on PyTorch's [launch utility](https://pytorch.org/docs/stable/distributed.html#launch-utility).
Optional arguments:
- `RESULT_FILE`: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.
- `EVAL_METRICS`: Items to be evaluated on the results. Allowed values depend on the dataset, e.g., `proposal_fast`, `proposal`, `bbox`, `segm` are available for COCO, `mAP`, `recall` for PASCAL VOC. Cityscapes could be evaluated by `cityscapes` as well as all COCO metrics.
- `--show`: If specified, detection results will be plotted on the images and shown in a new window. It is only applicable to single GPU testing and used for debugging and visualization. Please make sure that GUI is available in your environment. Otherwise, you may encounter an error like `cannot connect to X server`.
- `--show-dir`: If specified, detection results will be plotted on the images and saved to the specified directory. It is only applicable to single GPU testing and used for debugging and visualization. You do NOT need a GUI available in your environment for using this option.
- `--show-score-thr`: If specified, detections with scores below this threshold will be removed.
- `--cfg-options`: if specified, the key-value pair optional cfg will be merged into config file
- `--eval-options`: if specified, the key-value pair optional eval cfg will be kwargs for dataset.evaluate() function, it's only for evaluation
### Examples
Assume that you have already downloaded the checkpoints to the directory `checkpoints/`.
1. Test Faster R-CNN and visualize the results. Press any key for the next image.
Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn).
```shell
python tools/test.py \
configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--show
```
2. Test Faster R-CNN and save the painted images for future visualization.
Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn).
```shell
python tools/test.py \
configs/faster_rcnn/faster_rcnn_r50_fpn_1x.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--show-dir faster_rcnn_r50_fpn_1x_results
```
3. Test Faster R-CNN on PASCAL VOC (without saving the test results) and evaluate the mAP.
Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/pascal_voc).
```shell
python tools/test.py \
configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc.py \
checkpoints/faster_rcnn_r50_fpn_1x_voc0712_20200624-c9895d40.pth \
--eval mAP
```
4. Test Mask R-CNN with 8 GPUs, and evaluate the bbox and mask AP.
Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn).
```shell
./tools/dist_test.sh \
configs/mask_rcnn_r50_fpn_1x_coco.py \
checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
8 \
--out results.pkl \
--eval bbox segm
```
5. Test Mask R-CNN with 8 GPUs, and evaluate the **classwise** bbox and mask AP.
Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn).
```shell
./tools/dist_test.sh \
configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
8 \
--out results.pkl \
--eval bbox segm \
--options "classwise=True"
```
6. Test Mask R-CNN on COCO test-dev with 8 GPUs, and generate JSON files for submitting to the official evaluation server.
Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn).
```shell
./tools/dist_test.sh \
configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
8 \
--format-only \
--options "jsonfile_prefix=./mask_rcnn_test-dev_results"
```
This command generates two JSON files `mask_rcnn_test-dev_results.bbox.json` and `mask_rcnn_test-dev_results.segm.json`.
7. Test Mask R-CNN on Cityscapes test with 8 GPUs, and generate txt and png files for submitting to the official evaluation server.
Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/cityscapes).
```shell
./tools/dist_test.sh \
configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py \
checkpoints/mask_rcnn_r50_fpn_1x_cityscapes_20200227-afe51d5a.pth \
8 \
--format-only \
--options "txtfile_prefix=./mask_rcnn_cityscapes_test_results"
```
The generated png and txt would be under `./mask_rcnn_cityscapes_test_results` directory.
### Test without Ground Truth Annotations
MMDetection supports to test models without ground-truth annotations using `CocoDataset`. If your dataset format is not in COCO format, please convert them to COCO format. For example, if your dataset format is VOC, you can directly convert it to COCO format by the [script in tools.](https://github.com/open-mmlab/mmdetection/tree/master/tools/dataset_converters/pascal_voc.py)
```shell
# single-gpu testing
python tools/test.py \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
--format-only \
--options ${JSONFILE_PREFIX} \
[--show]
# multi-gpu testing
bash tools/dist_test.sh \
${CONFIG_FILE} \
${CHECKPOINT_FILE} \
${GPU_NUM} \
--format-only \
--options ${JSONFILE_PREFIX} \
[--show]
```
Assuming that the checkpoints in the [model zoo](https://mmdetection.readthedocs.io/en/latest/modelzoo_statistics.html) have been downloaded to the directory `checkpoints/`, we can test Mask R-CNN on COCO test-dev with 8 GPUs, and generate JSON files using the following command.
```sh
./tools/dist_test.sh \
configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py \
checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth \
8 \
-format-only \
--options "jsonfile_prefix=./mask_rcnn_test-dev_results"
```
This command generates two JSON files `mask_rcnn_test-dev_results.bbox.json` and `mask_rcnn_test-dev_results.segm.json`.
### Batch Inference
MMDetection supports inference with a single image or batched images in test mode. By default, we use single-image inference and you can use batch inference by modifying `samples_per_gpu` in the config of test data. You can do that either by modifying the config as below.
```shell
data = dict(train=dict(...), val=dict(...), test=dict(samples_per_gpu=2, ...))
```
Or you can set it through `--cfg-options` as `--cfg-options data.test.samples_per_gpu=2`
### Deprecated ImageToTensor
In test mode, `ImageToTensor` pipeline is deprecated, it's replaced by `DefaultFormatBundle` that recommended to manually replace it in the test data pipeline in your config file. examples:
```python
# use ImageToTensor (deprecated)
pipelines = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', mean=[0, 0, 0], std=[1, 1, 1]),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
# manually replace ImageToTensor to DefaultFormatBundle (recommended)
pipelines = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', mean=[0, 0, 0], std=[1, 1, 1]),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img']),
])
]
```
## Train predefined models on standard datasets
MMDetection also provides out-of-the-box tools for training detection models.
This section will show how to train _predefined_ models (under [configs](https://github.com/open-mmlab/mmdetection/tree/master/configs)) on standard datasets i.e. COCO.
**Important**: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8\*2 = 16).
According to the [linear scaling rule](https://arxiv.org/abs/1706.02677), you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., `lr=0.01` for 4 GPUs \* 2 imgs/gpu and `lr=0.08` for 16 GPUs \* 4 imgs/gpu.
### Prepare datasets
Training requires preparing datasets too. See section [Prepare datasets](#prepare-datasets) above for details.
**Note**:
Currently, the config files under `configs/cityscapes` use COCO pretrained weights to initialize.
You could download the existing models in advance if the network connection is unavailable or slow. Otherwise, it would cause errors at the beginning of training.
### Training on a single GPU
We provide `tools/train.py` to launch training jobs on a single GPU.
The basic usage is as follows.
```shell
python tools/train.py \
${CONFIG_FILE} \
[optional arguments]
```
During training, log files and checkpoints will be saved to the working directory, which is specified by `work_dir` in the config file or via CLI argument `--work-dir`.
By default, the model is evaluated on the validation set every epoch, the evaluation interval can be specified in the config file as shown below.
```python
# evaluate the model every 12 epoch.
evaluation = dict(interval=12)
```
This tool accepts several optional arguments, including:
- `--no-validate` (**not suggested**): Disable evaluation during training.
- `--work-dir ${WORK_DIR}`: Override the working directory.
- `--resume-from ${CHECKPOINT_FILE}`: Resume from a previous checkpoint file.
- `--options 'Key=value'`: Overrides other settings in the used config.
**Note**:
Difference between `resume-from` and `load-from`:
`resume-from` loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally.
`load-from` only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.
### Training on multiple GPUs
We provide `tools/dist_train.sh` to launch training on multiple GPUs.
The basic usage is as follows.
```shell
bash ./tools/dist_train.sh \
${CONFIG_FILE} \
${GPU_NUM} \
[optional arguments]
```
Optional arguments remain the same as stated [above](#train-with-a-single-GPU).
#### Launch multiple jobs simultaneously
If you would like to launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
you need to specify different ports (29500 by default) for each job to avoid communication conflict.
If you use `dist_train.sh` to launch training jobs, you can set the port in commands.
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4
```
### Training on multiple nodes
MMDetection relies on `torch.distributed` package for distributed training.
Thus, as a basic usage, one can launch distributed training via PyTorch's [launch utility](https://pytorch.org/docs/stable/distributed.html#launch-utility).
### Manage jobs with Slurm
[Slurm](https://slurm.schedmd.com/) is a good job scheduling system for computing clusters.
On a cluster managed by Slurm, you can use `slurm_train.sh` to spawn training jobs. It supports both single-node and multi-node training.
The basic usage is as follows.
```shell
[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}
```
Below is an example of using 16 GPUs to train Mask R-CNN on a Slurm partition named _dev_, and set the work-dir to some shared file systems.
```shell
GPUS=16 ./tools/slurm_train.sh dev mask_r50_1x configs/mask_rcnn_r50_fpn_1x_coco.py /nfs/xxxx/mask_rcnn_r50_fpn_1x
```
You can check [the source code](https://github.com/open-mmlab/mmdetection/blob/master/tools/slurm_train.sh) to review full arguments and environment variables.
When using Slurm, the port option need to be set in one of the following ways:
1. Set the port through `--options`. This is more recommended since it does not change the original configs.
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR} --options 'dist_params.port=29500'
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR} --options 'dist_params.port=29501'
```
2. Modify the config files to set different communication ports.
In `config1.py`, set
```python
dist_params = dict(backend='nccl', port=29500)
```
In `config2.py`, set
```python
dist_params = dict(backend='nccl', port=29501)
```
Then you can launch two jobs with `config1.py` and `config2.py`.
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR}
```
|