File size: 1,526 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
# model settings
model = dict(
    roi_head=dict(
        bbox_roi_extractor=dict(
            type='GenericRoIExtractor',
            aggregation='sum',
            roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32],
            pre_cfg=dict(
                type='ConvModule',
                in_channels=256,
                out_channels=256,
                kernel_size=5,
                padding=2,
                inplace=False,
            ),
            post_cfg=dict(
                type='GeneralizedAttention',
                in_channels=256,
                spatial_range=-1,
                num_heads=6,
                attention_type='0100',
                kv_stride=2)),
        mask_roi_extractor=dict(
            type='GenericRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=2),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32],
            pre_cfg=dict(
                type='ConvModule',
                in_channels=256,
                out_channels=256,
                kernel_size=5,
                padding=2,
                inplace=False,
            ),
            post_cfg=dict(
                type='GeneralizedAttention',
                in_channels=256,
                spatial_range=-1,
                num_heads=6,
                attention_type='0100',
                kv_stride=2))))