SpanMarker with roberta-large on YurtsAI/named_entity_recognition_document_context
This is a SpanMarker model trained on the YurtsAI/named_entity_recognition_document_context dataset that can be used for Named Entity Recognition. This SpanMarker model uses roberta-large as the underlying encoder.
Model Details
Model Description
- Model Type: SpanMarker
- Encoder: roberta-large
- Maximum Sequence Length: 256 tokens
- Maximum Entity Length: 11 words
- Training Dataset: YurtsAI/named_entity_recognition_document_context
- Language: en
Model Sources
- Repository: SpanMarker on GitHub
- Thesis: SpanMarker For Named Entity Recognition
Model Labels
Label | Examples |
---|---|
DATETIME__absolute | "14:00 hrs", "15th november 2023 at 10:00 am", "october 15th , 2023" |
DATETIME__authored | "25 february 26", "sunday , 21 august , 1938", "1961-05-08" |
DATETIME__range | "29th of oct. , 2023", "september 2021 to august 2023", "jan 2022 - dec 2022" |
DATETIME__relative | "eod friday", "dec 15 , 11:59 pm", "10/15" |
GENERAL__art-broadcastprogram | "stranger things", "live q & a", "product design concept sketchbook for kids" |
GENERAL__art-film | "the crown", "kill bill", "stranger things" |
GENERAL__art-music | |
GENERAL__art-other | "statue of liberty", "broadway show", "wicked" |
GENERAL__art-painting | "draw your dream house", "design a superhero costume" |
GENERAL__art-writtenart | "optimization of quantum algorithms for cryptographic applications", "introduction to algorithms", "intro to cs '' by j. doe" |
GENERAL__building-airport | "ory", "charles de gaulle", "cdg" |
GENERAL__building-hospital | "green valley clinic", "department of oncology", "st. mary 's hospital" |
GENERAL__building-hotel | "le jules verne", "hôtel ritz", "the beverly hills hotel" |
GENERAL__building-library | "ancient library", "the grand library", "jefferson library" |
GENERAL__building-other | "louvre museum", "engineering building", "eiffel tower" |
GENERAL__building-restaurant | "l'ambroisie", "bella 's bistro", "in-n-out burger" |
GENERAL__building-sportsfacility | "fenway" |
GENERAL__building-theater | "gershwin theatre", "opera house", "broadway" |
GENERAL__event-attack/battle/war/militaryconflict | "1863 battle of ridgefield", "battle of gettysburg", "war of 1812" |
GENERAL__event-other | "annual science fair", "summer splash '23", "research methodology workshop" |
GENERAL__event-sportsevent | "international olympiad in informatics", "ftx", "ioi" |
GENERAL__location-GPE | "fr", "paris ,", "italy" |
GENERAL__location-bodiesofwater | "river x", "river blue", "seine river" |
GENERAL__location-island | "maldives", "similan islands", "ellis island" |
GENERAL__location-mountain | "andes mountains", "swiss alps", "pine ridge" |
GENERAL__location-other | "times square", "old market", "venice beach" |
GENERAL__location-park | "central park", "ueno park", "universal studios" |
GENERAL__location-road/railway/highway/transit | "i-95", "underground railroad", "hollywood walk of fame" |
GENERAL__organization-company | "green earth organics", "xyz corporation", "north atlantic fisheries" |
GENERAL__organization-education | "graduate school", "xyz", "xyz university" |
GENERAL__organization-government/governmentagency | "department of economic development", "moe", "ministry of environment" |
GENERAL__organization-media/newspaper | "pinterest", "yelp", "insta" |
GENERAL__organization-other | "historical society", "grants office", "admissions committee" |
GENERAL__organization-religion | "buddhist", "zen buddhist", "shinto" |
GENERAL__organization-showorganization | "phare", "the soundbytes" |
GENERAL__organization-sportsteam | "varsity soccer team", "red sox" |
GENERAL__other-astronomything | |
GENERAL__other-award | "team excellence award", "innovation award", "employee of the month" |
GENERAL__other-biologything | "fodmap", "troponin i", "cmp" |
GENERAL__other-chemicalthing | "co2", "pm2.5", "nitrate" |
GENERAL__other-currency | "usd", "inr", "$ $ $" |
GENERAL__other-disease | "mi", "irritable bowel syndrome", "myocardial infarction" |
GENERAL__other-educationaldegree | "executive mba", "phd in quantum computing ,", "phd" |
GENERAL__other-god | "inari", "athena", "inari taisha" |
GENERAL__other-language | "french", "english", "spanish" |
GENERAL__other-law | "cas", "clean air standards", "environmental protection act ( epa ) 2023" |
GENERAL__other-livingthing | "eastern box turtle", "monarch butterfly", "western burrowing owl" |
GENERAL__other-medical | "asa", "dapt", "clopidogrel" |
GENERAL__person-artist/author | "carol", "picasso", "warhol" |
GENERAL__person-other | "jamie", "sarah", "mark" |
GENERAL__person-politician | "jane doe", "vespasian", "constantine i" |
GENERAL__person-scholar | "dr. smith", "dr. lee", "dr. johnson" |
GENERAL__person-soldier | "davis", "lt. sarah johnson", "col. r. johnson" |
GENERAL__product-airplane | "hmmwvs", "uh-60s", "m1a2s" |
GENERAL__product-car | "hmmwvs", "high mobility multipurpose wheeled vehicles", "mine-resistant ambush protected" |
GENERAL__product-food | "pumpkin spice", "quinoa salad", "golden jubilee feast" |
GENERAL__product-game | "stardew valley", "valorant", "call of duty : warzone" |
GENERAL__product-other | "engagement metrics", "xj-200", "smart goal templates" |
GENERAL__product-ship | "liberty island ferry", "hms victory", "thames river cruise" |
GENERAL__product-software | "instagram", "svm", "r" |
GENERAL__product-train | "n'ex", "shinkansen", "tgv" |
GENERAL__product-weapon | "m1 abrams", "m4 carbine", "m4 carbines" |
Evaluation
Metrics
Label | Precision | Recall | F1 |
---|---|---|---|
all | 0.8309 | 0.8390 | 0.8349 |
DATETIME__absolute | 0.8744 | 0.8577 | 0.8660 |
DATETIME__authored | 0.9956 | 0.9935 | 0.9946 |
DATETIME__range | 0.8451 | 0.9262 | 0.8838 |
DATETIME__relative | 0.8266 | 0.7498 | 0.7863 |
GENERAL__art-broadcastprogram | 0.6538 | 0.6296 | 0.6415 |
GENERAL__art-film | 0.8 | 1.0 | 0.8889 |
GENERAL__art-music | 0.0 | 0.0 | 0.0 |
GENERAL__art-other | 0.625 | 0.7143 | 0.6667 |
GENERAL__art-painting | 0.0 | 0.0 | 0.0 |
GENERAL__art-writtenart | 0.7373 | 0.8047 | 0.7695 |
GENERAL__building-airport | 0.8668 | 0.9689 | 0.9150 |
GENERAL__building-hospital | 0.8378 | 0.9323 | 0.8826 |
GENERAL__building-hotel | 0.7577 | 0.8603 | 0.8057 |
GENERAL__building-library | 0.0 | 0.0 | 0.0 |
GENERAL__building-other | 0.7597 | 0.8409 | 0.7982 |
GENERAL__building-restaurant | 0.7953 | 0.8695 | 0.8307 |
GENERAL__building-sportsfacility | 0.0 | 0.0 | 0.0 |
GENERAL__building-theater | 0.6 | 0.6667 | 0.6316 |
GENERAL__event-attack/battle/war/militaryconflict | 0.8438 | 0.9310 | 0.8852 |
GENERAL__event-other | 0.6019 | 0.6382 | 0.6195 |
GENERAL__event-sportsevent | 0.0 | 0.0 | 0.0 |
GENERAL__location-GPE | 0.7232 | 0.7888 | 0.7546 |
GENERAL__location-bodiesofwater | 0.6724 | 0.975 | 0.7959 |
GENERAL__location-island | 0.7455 | 0.9111 | 0.8200 |
GENERAL__location-mountain | 0.7436 | 0.8529 | 0.7945 |
GENERAL__location-other | 0.7186 | 0.7793 | 0.7477 |
GENERAL__location-park | 0.7899 | 0.8704 | 0.8282 |
GENERAL__location-road/railway/highway/transit | 0.6325 | 0.7095 | 0.6688 |
GENERAL__organization-company | 0.8665 | 0.8605 | 0.8635 |
GENERAL__organization-education | 0.8256 | 0.8608 | 0.8428 |
GENERAL__organization-government/governmentagency | 0.8344 | 0.8318 | 0.8331 |
GENERAL__organization-media/newspaper | 0.6667 | 0.4 | 0.5 |
GENERAL__organization-other | 0.7790 | 0.8105 | 0.7944 |
GENERAL__organization-religion | 0.6667 | 0.8 | 0.7273 |
GENERAL__organization-showorganization | 0.0 | 0.0 | 0.0 |
GENERAL__organization-sportsteam | 0.0 | 0.0 | 0.0 |
GENERAL__other-astronomything | 0.0 | 0.0 | 0.0 |
GENERAL__other-award | 0.8216 | 0.8859 | 0.8525 |
GENERAL__other-biologything | 0.7246 | 0.8961 | 0.8013 |
GENERAL__other-chemicalthing | 0.7687 | 0.8047 | 0.7863 |
GENERAL__other-currency | 0.6304 | 0.6744 | 0.6517 |
GENERAL__other-disease | 0.8594 | 0.9048 | 0.8815 |
GENERAL__other-educationaldegree | 0.7119 | 0.75 | 0.7304 |
GENERAL__other-god | 0.8 | 0.5714 | 0.6667 |
GENERAL__other-language | 0.6818 | 1.0 | 0.8108 |
GENERAL__other-law | 0.7978 | 0.8462 | 0.8212 |
GENERAL__other-livingthing | 0.7385 | 0.9320 | 0.8240 |
GENERAL__other-medical | 0.7778 | 0.8343 | 0.8050 |
GENERAL__person-artist/author | 0.625 | 0.3846 | 0.4762 |
GENERAL__person-other | 0.8839 | 0.8979 | 0.8908 |
GENERAL__person-politician | 0.7534 | 0.7432 | 0.7483 |
GENERAL__person-scholar | 0.8640 | 0.8769 | 0.8704 |
GENERAL__person-soldier | 0.7674 | 0.7586 | 0.7630 |
GENERAL__product-airplane | 0.6774 | 0.6364 | 0.6562 |
GENERAL__product-car | 0.9286 | 0.7879 | 0.8525 |
GENERAL__product-food | 0.7798 | 0.7859 | 0.7828 |
GENERAL__product-game | 0.75 | 0.75 | 0.75 |
GENERAL__product-other | 0.7175 | 0.7537 | 0.7351 |
GENERAL__product-ship | 0.0 | 0.0 | 0.0 |
GENERAL__product-software | 0.8093 | 0.8403 | 0.8245 |
GENERAL__product-train | 0.75 | 0.375 | 0.5 |
GENERAL__product-weapon | 0.7794 | 0.8833 | 0.8281 |
Uses
Direct Use for Inference
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("YurtsAI/named_entity_recognition_document_context")
# Run inference
entities = model.predict("monday is a chill day – beach time at barceloneta and maybe some shopping at la rambla.")
Downstream Use
You can finetune this model on your own dataset.
Click to expand
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("YurtsAI/ner-document-context")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("YurtsAI/named_entity_recognition_document_context-finetuned")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 1 | 14.6796 | 691 |
Entities per sentence | 0 | 0.4235 | 35 |
Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training Results
Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
---|---|---|---|---|---|---|
0.0299 | 500 | 0.0254 | 0.5244 | 0.0116 | 0.0228 | 0.9292 |
0.0597 | 1000 | 0.0144 | 0.5380 | 0.3492 | 0.4235 | 0.9444 |
0.0896 | 1500 | 0.0099 | 0.7134 | 0.4410 | 0.5450 | 0.9534 |
0.1194 | 2000 | 0.0088 | 0.6461 | 0.6571 | 0.6516 | 0.9596 |
0.1493 | 2500 | 0.0074 | 0.7177 | 0.6363 | 0.6745 | 0.9628 |
0.1791 | 3000 | 0.0075 | 0.6612 | 0.7342 | 0.6958 | 0.9637 |
0.2090 | 3500 | 0.0073 | 0.6686 | 0.7286 | 0.6973 | 0.9634 |
0.2388 | 4000 | 0.0061 | 0.7552 | 0.7044 | 0.7289 | 0.9693 |
0.2687 | 4500 | 0.0062 | 0.7385 | 0.7150 | 0.7266 | 0.9682 |
0.2986 | 5000 | 0.0070 | 0.6667 | 0.7792 | 0.7186 | 0.9654 |
0.3284 | 5500 | 0.0063 | 0.6984 | 0.7774 | 0.7358 | 0.9689 |
0.3583 | 6000 | 0.0055 | 0.7941 | 0.7023 | 0.7454 | 0.9706 |
0.3881 | 6500 | 0.0055 | 0.7540 | 0.7640 | 0.7589 | 0.9722 |
0.4180 | 7000 | 0.0053 | 0.7700 | 0.7614 | 0.7657 | 0.9732 |
0.4478 | 7500 | 0.0053 | 0.7791 | 0.7698 | 0.7744 | 0.9742 |
0.4777 | 8000 | 0.0054 | 0.7396 | 0.8062 | 0.7715 | 0.9729 |
0.5075 | 8500 | 0.0051 | 0.7653 | 0.7944 | 0.7796 | 0.9741 |
0.5374 | 9000 | 0.0050 | 0.7773 | 0.7844 | 0.7808 | 0.9747 |
0.5672 | 9500 | 0.0049 | 0.7954 | 0.7711 | 0.7830 | 0.9757 |
0.5971 | 10000 | 0.0049 | 0.7844 | 0.7876 | 0.7860 | 0.9754 |
0.6270 | 10500 | 0.0047 | 0.7898 | 0.7940 | 0.7919 | 0.9761 |
0.6568 | 11000 | 0.0047 | 0.7852 | 0.7929 | 0.7890 | 0.9761 |
0.6867 | 11500 | 0.0047 | 0.8001 | 0.7908 | 0.7954 | 0.9770 |
0.7165 | 12000 | 0.0050 | 0.7643 | 0.8145 | 0.7886 | 0.9755 |
0.7464 | 12500 | 0.0047 | 0.7991 | 0.7892 | 0.7941 | 0.9764 |
0.7762 | 13000 | 0.0046 | 0.7948 | 0.8084 | 0.8015 | 0.9774 |
0.8061 | 13500 | 0.0046 | 0.7841 | 0.8154 | 0.7994 | 0.9771 |
0.8359 | 14000 | 0.0043 | 0.8283 | 0.7776 | 0.8021 | 0.9783 |
0.8658 | 14500 | 0.0044 | 0.8054 | 0.7993 | 0.8023 | 0.9773 |
0.8957 | 15000 | 0.0047 | 0.7704 | 0.8152 | 0.7922 | 0.9758 |
0.9255 | 15500 | 0.0043 | 0.8018 | 0.8149 | 0.8083 | 0.9782 |
0.9554 | 16000 | 0.0043 | 0.8255 | 0.7938 | 0.8093 | 0.9789 |
0.9852 | 16500 | 0.0042 | 0.8201 | 0.8008 | 0.8104 | 0.9787 |
1.0151 | 17000 | 0.0044 | 0.7947 | 0.8175 | 0.8059 | 0.9784 |
1.0449 | 17500 | 0.0044 | 0.7942 | 0.8195 | 0.8066 | 0.9777 |
1.0748 | 18000 | 0.0043 | 0.8124 | 0.8110 | 0.8117 | 0.9789 |
1.1046 | 18500 | 0.0043 | 0.7987 | 0.8157 | 0.8071 | 0.9788 |
1.1345 | 19000 | 0.0043 | 0.8037 | 0.8171 | 0.8103 | 0.9789 |
1.1644 | 19500 | 0.0042 | 0.8178 | 0.8076 | 0.8127 | 0.9796 |
1.1942 | 20000 | 0.0044 | 0.7803 | 0.8389 | 0.8085 | 0.9780 |
1.2241 | 20500 | 0.0043 | 0.8040 | 0.8210 | 0.8124 | 0.9790 |
1.2539 | 21000 | 0.0043 | 0.8038 | 0.8245 | 0.8141 | 0.9788 |
1.2838 | 21500 | 0.0041 | 0.8318 | 0.7973 | 0.8142 | 0.9794 |
1.3136 | 22000 | 0.0041 | 0.8106 | 0.8211 | 0.8158 | 0.9796 |
1.3435 | 22500 | 0.0041 | 0.8288 | 0.8046 | 0.8165 | 0.9796 |
1.3733 | 23000 | 0.0041 | 0.8218 | 0.8170 | 0.8194 | 0.9799 |
1.4032 | 23500 | 0.0042 | 0.8164 | 0.8171 | 0.8168 | 0.9799 |
1.4330 | 24000 | 0.0041 | 0.8105 | 0.8248 | 0.8176 | 0.9793 |
1.4629 | 24500 | 0.0042 | 0.8073 | 0.8196 | 0.8134 | 0.9791 |
1.4928 | 25000 | 0.0040 | 0.8211 | 0.8162 | 0.8187 | 0.9797 |
1.5226 | 25500 | 0.0040 | 0.8195 | 0.8225 | 0.8210 | 0.9800 |
1.5525 | 26000 | 0.0040 | 0.8372 | 0.8018 | 0.8191 | 0.9799 |
1.5823 | 26500 | 0.0040 | 0.8263 | 0.8161 | 0.8212 | 0.9802 |
1.6122 | 27000 | 0.0039 | 0.8275 | 0.8141 | 0.8208 | 0.9802 |
1.6420 | 27500 | 0.0040 | 0.8264 | 0.8198 | 0.8231 | 0.9804 |
1.6719 | 28000 | 0.0040 | 0.8218 | 0.8195 | 0.8206 | 0.9799 |
1.7017 | 28500 | 0.0039 | 0.8286 | 0.8195 | 0.8240 | 0.9803 |
1.7316 | 29000 | 0.0041 | 0.8004 | 0.8357 | 0.8177 | 0.9788 |
1.7615 | 29500 | 0.0040 | 0.8138 | 0.8304 | 0.8220 | 0.9801 |
1.7913 | 30000 | 0.0040 | 0.8160 | 0.8309 | 0.8234 | 0.9804 |
1.8212 | 30500 | 0.0039 | 0.8204 | 0.8262 | 0.8233 | 0.9802 |
1.8510 | 31000 | 0.0038 | 0.8292 | 0.8228 | 0.8260 | 0.9810 |
1.8809 | 31500 | 0.0039 | 0.8247 | 0.8246 | 0.8246 | 0.9806 |
1.9107 | 32000 | 0.0038 | 0.8267 | 0.8258 | 0.8262 | 0.9810 |
1.9406 | 32500 | 0.0039 | 0.8102 | 0.8398 | 0.8248 | 0.9805 |
1.9704 | 33000 | 0.0039 | 0.8321 | 0.8185 | 0.8253 | 0.9809 |
2.0003 | 33500 | 0.0038 | 0.8325 | 0.8261 | 0.8293 | 0.9814 |
2.0302 | 34000 | 0.0038 | 0.8352 | 0.8228 | 0.8289 | 0.9813 |
2.0600 | 34500 | 0.0041 | 0.8144 | 0.8369 | 0.8255 | 0.9809 |
2.0899 | 35000 | 0.0039 | 0.8274 | 0.8281 | 0.8277 | 0.9813 |
2.1197 | 35500 | 0.0039 | 0.8198 | 0.8353 | 0.8275 | 0.9812 |
2.1496 | 36000 | 0.0039 | 0.8211 | 0.8358 | 0.8284 | 0.9811 |
2.1794 | 36500 | 0.0039 | 0.8242 | 0.8300 | 0.8271 | 0.9809 |
2.2093 | 37000 | 0.0039 | 0.8194 | 0.8317 | 0.8255 | 0.9808 |
2.2391 | 37500 | 0.0039 | 0.8258 | 0.8344 | 0.8301 | 0.9814 |
2.2690 | 38000 | 0.0039 | 0.8292 | 0.8302 | 0.8297 | 0.9816 |
2.2989 | 38500 | 0.0039 | 0.8281 | 0.8315 | 0.8298 | 0.9813 |
2.3287 | 39000 | 0.0039 | 0.8174 | 0.8386 | 0.8279 | 0.9808 |
2.3586 | 39500 | 0.0039 | 0.8208 | 0.8364 | 0.8285 | 0.9810 |
2.3884 | 40000 | 0.0039 | 0.8230 | 0.8379 | 0.8304 | 0.9815 |
2.4183 | 40500 | 0.0038 | 0.8355 | 0.8273 | 0.8314 | 0.9816 |
2.4481 | 41000 | 0.0038 | 0.8290 | 0.8347 | 0.8319 | 0.9816 |
2.4780 | 41500 | 0.0038 | 0.8233 | 0.8403 | 0.8317 | 0.9815 |
2.5078 | 42000 | 0.0039 | 0.8186 | 0.8417 | 0.8300 | 0.9814 |
2.5377 | 42500 | 0.0038 | 0.8321 | 0.8343 | 0.8332 | 0.9818 |
2.5675 | 43000 | 0.0038 | 0.8239 | 0.8396 | 0.8317 | 0.9816 |
2.5974 | 43500 | 0.0038 | 0.8267 | 0.8378 | 0.8322 | 0.9816 |
2.6273 | 44000 | 0.0038 | 0.8325 | 0.8343 | 0.8334 | 0.9818 |
2.6571 | 44500 | 0.0038 | 0.8254 | 0.8399 | 0.8326 | 0.9817 |
2.6870 | 45000 | 0.0038 | 0.8339 | 0.8338 | 0.8339 | 0.9820 |
2.7168 | 45500 | 0.0038 | 0.8301 | 0.8381 | 0.8341 | 0.9819 |
2.7467 | 46000 | 0.0038 | 0.8309 | 0.8371 | 0.8340 | 0.9818 |
2.7765 | 46500 | 0.0038 | 0.8296 | 0.8377 | 0.8337 | 0.9817 |
2.8064 | 47000 | 0.0037 | 0.8337 | 0.8349 | 0.8343 | 0.9820 |
2.8362 | 47500 | 0.0037 | 0.8303 | 0.8387 | 0.8345 | 0.9820 |
2.8661 | 48000 | 0.0037 | 0.8289 | 0.8401 | 0.8344 | 0.9819 |
2.8960 | 48500 | 0.0037 | 0.8299 | 0.8400 | 0.8349 | 0.9820 |
2.9258 | 49000 | 0.0037 | 0.8289 | 0.8401 | 0.8344 | 0.9819 |
2.9557 | 49500 | 0.0037 | 0.8322 | 0.8380 | 0.8351 | 0.9821 |
2.9855 | 50000 | 0.0037 | 0.8312 | 0.8384 | 0.8348 | 0.9820 |
Framework Versions
- Python: 3.11.7
- SpanMarker: 1.5.0
- Transformers: 4.42.1
- PyTorch: 2.1.1+cu121
- Datasets: 2.14.5
- Tokenizers: 0.19.1
Citation
BibTeX
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
- Downloads last month
- 191
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for YurtsAI/ner-document-context
Base model
FacebookAI/roberta-largeDataset used to train YurtsAI/ner-document-context
Evaluation results
- F1 on Unknownself-reported0.835
- Precision on Unknownself-reported0.831
- Recall on Unknownself-reported0.839