metadata
tags:
- merge
- mergekit
- lazymergekit
- Yuma42/KangalKhan-Beta-Sapphire-7B
- Yuma42/KangalKhan-Ruby-7B-Fixed
base_model:
- Yuma42/KangalKhan-Beta-Sapphire-7B
- Yuma42/KangalKhan-Ruby-7B-Fixed
license: apache-2.0
language:
- en
KangalKhan-Alpha-Emerald-7B-Fixed
KangalKhan-Alpha-Emerald-7B-Fixed is a merge of the following models using LazyMergekit:
🧩 Configuration
slices:
- sources:
- model: Yuma42/KangalKhan-Beta-Sapphire-7B
layer_range: [0, 32]
- model: Yuma42/KangalKhan-Ruby-7B-Fixed
layer_range: [0, 32]
merge_method: slerp
base_model: Yuma42/KangalKhan-Beta-Sapphire-7B
parameters:
t:
- filter: self_attn
value: [0.9, 0.45, 0.65, 0.25, 0.03]
- filter: mlp
value: [0.1, 0.55, 0.35, 0.75, 0.97]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Yuma42/KangalKhan-Alpha-Emerald-7B-Fixed"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])