Yorkinjon's picture
End of training
4fd4d73 verified
metadata
library_name: transformers
language:
  - uz
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small uz - Yorkerdev
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: uz
          split: test
          args: 'config: uz, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 33.687376750455556

Whisper Small uz - Yorkerdev

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3481
  • Wer: 33.6874

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6132 0.2640 1000 0.5668 49.3073
0.4946 0.5280 2000 0.4544 40.9201
0.4363 0.7919 3000 0.4098 37.8935
0.3124 1.0557 4000 0.3872 38.4938
0.2919 1.3197 5000 0.3674 35.4522
0.2711 1.5837 6000 0.3577 34.6721
0.2754 1.8476 7000 0.3491 33.6874
0.2024 2.1114 8000 0.3481 33.6874

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu118
  • Datasets 3.3.2
  • Tokenizers 0.21.0