Yifeng-Liu's picture
Update README.md
2d799d8 verified
---
base_model: PekingU/rtdetr_r101vd_coco_o365
datasets: keremberke/satellite-building-segmentation
library_name: transformers
license: mit
metrics:
- Average Precision (AP)
- Average Recall (AR)
pipeline_tag: object-detection
tags:
- remote sensing
- object detection
widget:
- src: img.png
output:
url: img.png
model-index:
- name: rt-detr-finetuned-for-satellite-image-roofs-detection
results:
- task:
type: object-detection
dataset:
name: keremberke/satellite-building-segmentation
type: image-segmentation
metrics:
- type: AP (IoU=0.50:0.95)
value: 0.434
name: AP @ IoU=0.50:0.95 | area=all | maxDets=100
- type: AP (IoU=0.50)
value: 0.652
name: AP @ IoU=0.50 | area=all | maxDets=100
- type: AP (IoU=0.75)
value: 0.464
name: AP @ IoU=0.75 | area=all | maxDets=100
- type: AP (IoU=0.50:0.95) small objects
value: 0.248
name: AP @ IoU=0.50:0.95 | area=small | maxDets=100
- type: AP (IoU=0.50:0.95) medium objects
value: 0.510
name: AP @ IoU=0.50:0.95 | area=medium | maxDets=100
- type: AP (IoU=0.50:0.95) large objects
value: 0.632
name: AP @ IoU=0.50:0.95 | area=large | maxDets=100
- type: AR (IoU=0.50:0.95) maxDets=1
value: 0.056
name: AR @ IoU=0.50:0.95 | area=all | maxDets=1
- type: AR (IoU=0.50:0.95) maxDets=10
value: 0.328
name: AR @ IoU=0.50:0.95 | area=all | maxDets=10
- type: AR (IoU=0.50:0.95) maxDets=100
value: 0.519
name: AR @ IoU=0.50:0.95 | area=all | maxDets=100
- type: AR (IoU=0.50:0.95) small objects
value: 0.337
name: AR @ IoU=0.50:0.95 | area=small | maxDets=100
- type: AR (IoU=0.50:0.95) medium objects
value: 0.601
name: AR @ IoU=0.50:0.95 | area=medium | maxDets=100
- type: AR (IoU=0.50:0.95) large objects
value: 0.714
name: AR @ IoU=0.50:0.95 | area=large | maxDets=100
---
# Model Card
Roof Detection for Remote Sensing task.
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Model type:** Object Detection for Remote Sensing task.
- **License:** MIT
### Model Sources
<!-- Provide the basic links for the model. -->
- **GitHub:** [Jupyter Notebook](https://github.com/ownEyes/satellite-image-roofs-auto-annotation-sourcecode/blob/dev/notebooks/finetune_rtdetr.ipynb)
- **Demo:** [Hugging Face Space](https://huggingface.co/spaces/Yifeng-Liu/satellite-image-roofs-auto-annotation)
## Limitations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoModelForObjectDetection, AutoImageProcessor
import torch
import cv2
image_path=YOUR_IMAGE_PATH
image = cv2.imread(image_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForObjectDetection.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
image_processor = AutoImageProcessor.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
CONFIDENCE_TRESHOLD = 0.5
with torch.no_grad():
model.to(device)
# load image and predict
inputs = image_processor(images=image, return_tensors='pt').to(device)
outputs = model(**inputs)
# post-process
target_sizes = torch.tensor([image.shape[:2]]).to(device)
results = image_processor.post_process_object_detection(
outputs=outputs,
threshold=CONFIDENCE_TRESHOLD,
target_sizes=target_sizes
)[0]
```