|
--- |
|
base_model: PekingU/rtdetr_r101vd_coco_o365 |
|
datasets: keremberke/satellite-building-segmentation |
|
library_name: transformers |
|
license: mit |
|
metrics: |
|
- Average Precision (AP) |
|
- Average Recall (AR) |
|
pipeline_tag: object-detection |
|
tags: |
|
- remote sensing |
|
- object detection |
|
widget: |
|
- src: img.png |
|
output: |
|
url: img.png |
|
model-index: |
|
- name: rt-detr-finetuned-for-satellite-image-roofs-detection |
|
results: |
|
- task: |
|
type: object-detection |
|
dataset: |
|
name: keremberke/satellite-building-segmentation |
|
type: image-segmentation |
|
metrics: |
|
- type: AP (IoU=0.50:0.95) |
|
value: 0.434 |
|
name: AP @ IoU=0.50:0.95 | area=all | maxDets=100 |
|
- type: AP (IoU=0.50) |
|
value: 0.652 |
|
name: AP @ IoU=0.50 | area=all | maxDets=100 |
|
- type: AP (IoU=0.75) |
|
value: 0.464 |
|
name: AP @ IoU=0.75 | area=all | maxDets=100 |
|
- type: AP (IoU=0.50:0.95) small objects |
|
value: 0.248 |
|
name: AP @ IoU=0.50:0.95 | area=small | maxDets=100 |
|
- type: AP (IoU=0.50:0.95) medium objects |
|
value: 0.510 |
|
name: AP @ IoU=0.50:0.95 | area=medium | maxDets=100 |
|
- type: AP (IoU=0.50:0.95) large objects |
|
value: 0.632 |
|
name: AP @ IoU=0.50:0.95 | area=large | maxDets=100 |
|
- type: AR (IoU=0.50:0.95) maxDets=1 |
|
value: 0.056 |
|
name: AR @ IoU=0.50:0.95 | area=all | maxDets=1 |
|
- type: AR (IoU=0.50:0.95) maxDets=10 |
|
value: 0.328 |
|
name: AR @ IoU=0.50:0.95 | area=all | maxDets=10 |
|
- type: AR (IoU=0.50:0.95) maxDets=100 |
|
value: 0.519 |
|
name: AR @ IoU=0.50:0.95 | area=all | maxDets=100 |
|
- type: AR (IoU=0.50:0.95) small objects |
|
value: 0.337 |
|
name: AR @ IoU=0.50:0.95 | area=small | maxDets=100 |
|
- type: AR (IoU=0.50:0.95) medium objects |
|
value: 0.601 |
|
name: AR @ IoU=0.50:0.95 | area=medium | maxDets=100 |
|
- type: AR (IoU=0.50:0.95) large objects |
|
value: 0.714 |
|
name: AR @ IoU=0.50:0.95 | area=large | maxDets=100 |
|
--- |
|
|
|
# Model Card |
|
|
|
Roof Detection for Remote Sensing task. |
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
- **Model type:** Object Detection for Remote Sensing task. |
|
- **License:** MIT |
|
|
|
### Model Sources |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **GitHub:** [Jupyter Notebook](https://github.com/ownEyes/satellite-image-roofs-auto-annotation-sourcecode/blob/dev/notebooks/finetune_rtdetr.ipynb) |
|
- **Demo:** [Hugging Face Space](https://huggingface.co/spaces/Yifeng-Liu/satellite-image-roofs-auto-annotation) |
|
|
|
|
|
|
|
## Limitations |
|
|
|
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
```python |
|
from transformers import AutoModelForObjectDetection, AutoImageProcessor |
|
import torch |
|
import cv2 |
|
|
|
image_path=YOUR_IMAGE_PATH |
|
image = cv2.imread(image_path) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
model = AutoModelForObjectDetection.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection") |
|
image_processor = AutoImageProcessor.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection") |
|
|
|
|
|
CONFIDENCE_TRESHOLD = 0.5 |
|
|
|
with torch.no_grad(): |
|
model.to(device) |
|
|
|
# load image and predict |
|
inputs = image_processor(images=image, return_tensors='pt').to(device) |
|
outputs = model(**inputs) |
|
|
|
# post-process |
|
target_sizes = torch.tensor([image.shape[:2]]).to(device) |
|
results = image_processor.post_process_object_detection( |
|
outputs=outputs, |
|
threshold=CONFIDENCE_TRESHOLD, |
|
target_sizes=target_sizes |
|
)[0] |
|
``` |