YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
使用Firefly项目微调通义千问Qwen-7B模型。训练数据约为一百万多轮对话数据,包括项目分享的moss数据+2万条school math数据。
更多详情见项目Firefly
单轮对话:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
"""
单轮对话,不具有对话历史的记忆功能
"""
def main():
model_name = 'YeungNLP/firefly-qwen-7b'
max_new_tokens = 500
top_p = 0.9
temperature = 0.35
repetition_penalty = 1.0
device = 'cuda'
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
device_map='auto'
).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
# llama不支持fast
use_fast=False if model.config.model_type == 'llama' else True
)
# QWenTokenizer比较特殊,pad_token_id、bos_token_id、eos_token_id均为None。eod_id对应的token为<|endoftext|>
if tokenizer.__class__.__name__ == 'QWenTokenizer':
tokenizer.pad_token_id = tokenizer.eod_id
tokenizer.bos_token_id = tokenizer.eod_id
tokenizer.eos_token_id = tokenizer.eod_id
text = input('User:')
while True:
text = text.strip()
# chatglm使用官方的数据组织格式
if model.config.model_type == 'chatglm':
text = '[Round 1]\n\n问:{}\n\n答:'.format(text)
input_ids = tokenizer(text, return_tensors="pt", add_special_tokens=False).input_ids.to(device)
# 为了兼容qwen-7b,因为其对eos_token进行tokenize,无法得到对应的eos_token_id
else:
input_ids = tokenizer(text, return_tensors="pt", add_special_tokens=False).input_ids.to(device)
bos_token_id = torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).to(device)
eos_token_id = torch.tensor([[tokenizer.eos_token_id]], dtype=torch.long).to(device)
input_ids = torch.concat([bos_token_id, input_ids, eos_token_id], dim=1)
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True,
top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty,
eos_token_id=tokenizer.eos_token_id
)
outputs = outputs.tolist()[0][len(input_ids[0]):]
response = tokenizer.decode(outputs)
response = response.strip().replace(tokenizer.eos_token, "").strip()
print("Firefly:{}".format(response))
text = input('User:')
if __name__ == '__main__':
main()
多轮对话:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
def main():
model_name = 'YeungNLP/firefly-qwen-7b'
device = 'cuda'
max_new_tokens = 500 # 每轮对话最多生成多少个token
history_max_len = 1000 # 模型记忆的最大token长度
top_p = 0.9
temperature = 0.35
repetition_penalty = 1.0
# 加载模型
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
device_map='auto'
).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
# llama不支持fast
use_fast=False if model.config.model_type == 'llama' else True
)
# QWenTokenizer比较特殊,pad_token_id、bos_token_id、eos_token_id均为None。eod_id对应的token为<|endoftext|>
if tokenizer.__class__.__name__ == 'QWenTokenizer':
tokenizer.pad_token_id = tokenizer.eod_id
tokenizer.bos_token_id = tokenizer.eod_id
tokenizer.eos_token_id = tokenizer.eod_id
# 记录所有历史记录
if model.config.model_type != 'chatglm':
history_token_ids = torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long)
else:
history_token_ids = torch.tensor([[]], dtype=torch.long)
# 开始对话
utterance_id = 0 # 记录当前是第几轮对话,为了契合chatglm的数据组织格式
user_input = input('User:')
while True:
utterance_id += 1
# chatglm使用官方的数据组织格式
if model.config.model_type == 'chatglm':
user_input = '[Round {}]\n\n问:{}\n\n答:'.format(utterance_id, user_input)
user_input_ids = tokenizer(user_input, return_tensors="pt", add_special_tokens=False).input_ids
# firefly的数据组织格式
# 为了兼容qwen-7b,因为其对eos_token进行tokenize,无法得到对应的eos_token_id
else:
input_ids = tokenizer(user_input, return_tensors="pt", add_special_tokens=False).input_ids
eos_token_id = torch.tensor([[tokenizer.eos_token_id]], dtype=torch.long)
user_input_ids = torch.concat([input_ids, eos_token_id], dim=1)
history_token_ids = torch.concat((history_token_ids, user_input_ids), dim=1)
model_input_ids = history_token_ids[:, -history_max_len:].to(device)
with torch.no_grad():
outputs = model.generate(
input_ids=model_input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p,
temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=tokenizer.eos_token_id
)
model_input_ids_len = model_input_ids.size(1)
response_ids = outputs[:, model_input_ids_len:]
history_token_ids = torch.concat((history_token_ids, response_ids.cpu()), dim=1)
response = tokenizer.batch_decode(response_ids)
print("Firefly:" + response[0].strip().replace(tokenizer.eos_token, ""))
user_input = input('User:')
if __name__ == '__main__':
main()
- Downloads last month
- 121
Inference API (serverless) does not yet support model repos that contain custom code.