Usage
Support for this model will be added in the upcoming transformers release. In the meantime, please install the library from source:
pip install transformers
We can now run inference on this model:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
model_path = "YaoLuzjut/Llama-3.1-6.3B-It-Alpaca"
tokenizer = AutoTokenizer.from_pretrained(model_path)
device = 'cuda'
dtype = torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
# Prepare the input text
prompt = 'Complete the paragraph: our solar system is'
inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device)
# Generate the output
outputs = model.generate(inputs, max_length=20)
# Decode and print the output
output_text = tokenizer.decode(outputs[0])
print(output_text)
Evaluation Results
Zero-shot performance. Evaluated using select datasets from the LM Evaluation Harness with additions:
PIQA | HellaSwag | OpenbookQA | ARC-e | ARC-c | MMLU | CMMLU | WinoGrande |
---|---|---|---|---|---|---|---|
0.7383±0.0103 | 0.5323±0.0050 | 0.3080±0.0207 | 0.7260±0.0092 | 0.4684±0.0146 | 0.6567±0.0038 | 0.5515±0.0045 | 0.6646±0.0133 |
@article{lu2024reassessing,
title={Reassessing Layer Pruning in LLMs: New Insights and Methods},
author={Lu, Yao and Cheng, Hao and Fang, Yujie and Wang, Zeyu and Wei, Jiaheng and Xu, Dongwei and Xuan, Qi and Yang, Xiaoniu and Zhu, Zhaowei},
journal={arXiv preprint arXiv:2411.15558},
year={2024}
}
- Downloads last month
- 4
Model tree for YaoLuzjut/Llama-3.1-6.3B-It-Alpaca
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct