nash_dpo_merge_iter_3
This model is a fine-tuned version of YYYYYYibo/nash_dpo_merge_iter_2 on the updated and the original datasets. It achieves the following results on the evaluation set:
- Loss: 0.5506
- Rewards/chosen: -0.4423
- Rewards/rejected: -0.9695
- Rewards/accuracies: 0.7060
- Rewards/margins: 0.5272
- Logps/rejected: -386.9142
- Logps/chosen: -353.7201
- Logits/rejected: 0.3453
- Logits/chosen: -0.2965
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5641 | 0.49 | 100 | 0.5612 | -0.5147 | -0.9965 | 0.7020 | 0.4819 | -389.6182 | -360.9578 | 0.4191 | -0.1955 |
0.5515 | 0.98 | 200 | 0.5506 | -0.4423 | -0.9695 | 0.7060 | 0.5272 | -386.9142 | -353.7201 | 0.3453 | -0.2965 |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
- Downloads last month
- 3
Model tree for YYYYYYibo/nash_dpo_merge_iter_3
Base model
mistralai/Mistral-7B-v0.1
Finetuned
alignment-handbook/zephyr-7b-sft-full