ZYH-LLM-Qwen2.5-14B-V4
The fourth-generation model of ZYH-LLM-Qwen2.5 has been released!
Increase the proportion of the R1 distillation model in the model merging recipe while maintaining the model's instruction-following ability and general capabilities.
Merge Template
merge_method: model_stock
base_model: Instruction Model
models:
- model: Instruction Fine-tuning Model 1
- model: Instruction Fine-tuning Model 2
- model: Inference Fine-tuning Model 1
- model: Inference Fine-tuning Model 2
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
Using the above template for merging can improve the calculation accuracy and inference ability of the model without reducing the general capabilities of the instruction model.
ZYH-LLM-Qwen2.5-V4 used this template during the model merging process.
First stage:
Create four different instruction models and code model
models:
- model: Qwen/Qwen2.5-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
- model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: Qwen/Qwen2.5-14B
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-della-base
models:
- model: Qwen/Qwen2.5-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
- model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: arcee-ai/Virtuoso-Small-v2
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-della-v2
models:
- model: Qwen/Qwen2.5-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
- model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: arcee-ai/SuperNova-Medius
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-della-Nova
models:
- model: Qwen/Qwen2.5-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
- model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: Azure99/Blossom-V6-14B
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-della-V6
models:
- model: Qwen/Qwen2.5-Coder-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: Qwen/Qwen2.5-Coder-14B
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-Coder-14B-della
Second stage:
Step 1:
Create three instruction models with a bias towards reasoning by using templates.
merge_method: model_stock
base_model: Qwen2.5-14B-della-base
models:
- model: Qwen2.5-Coder-14B-della
- model: Qwen2.5-14B-della-v2
- model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
- model: huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
name: Qwen2.5-14B-mst-Coder
merge_method: model_stock
base_model: Qwen2.5-14B-della-base
models:
- model: Qwen2.5-14B-della-V6
- model: Qwen2.5-14B-della-v2
- model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
- model: huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
name: Qwen2.5-14B-mst-V6
merge_method: model_stock
base_model: Qwen2.5-14B-della-base
models:
- model: Qwen2.5-14B-della-Nova
- model: Qwen2.5-14B-della-v2
- model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
- model: huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
name: Qwen2.5-14B-mst-Nova
Step 2:
Create a pure instruction model to restore the generality of the final model.
merge_method: model_stock
base_model: Qwen2.5-14B-della-base
models:
- model: Qwen2.5-14B-della-Nova
- model: Qwen2.5-14B-della-v2
- model: Qwen2.5-14B-della-V6
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
name: Qwen2.5-14B-mst-it
Third stage:
Create a base model with a context of 1 million tokens.
merge_method: sce
models:
# Pivot model
- model: Qwen/Qwen2.5-14B-Instruct-1M
# Target models
- model: Qwen/Qwen2.5-14B
base_model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
select_topk: 1
dtype: bfloat16
tokenizer_source: base
normalize: true
int8_mask: true
name: Qwen2.5-14B-1M
models:
- model: Qwen/Qwen2.5-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
- model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: Qwen2.5-14B-1M
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-della-1M
Final stage:
merge_method: model_stock
base_model: Qwen2.5-14B-della-1M
models:
- model: Qwen2.5-14B-mst-Coder
- model: Qwen2.5-14B-mst-V6
- model: Qwen2.5-14B-mst-Nova
- model: Qwen2.5-14B-mst-it
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
name: ZYH-LLM-Qwen2.5-14B-V4
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for YOYO-AI/ZYH-LLM-Qwen2.5-14B-V4
Merge model
this model