Xmm's picture
End of training
05ee77f
|
raw
history blame
2.02 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - govreport-summarization
metrics:
  - rouge
model-index:
  - name: led-large-16384-govreport
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: govreport-summarization
          type: govreport-summarization
          config: document
          split: validation
          args: document
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.5194151586540673

led-large-16384-govreport

This model is a fine-tuned version of allenai/led-base-16384 on the govreport-summarization dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7624
  • Rouge1: 0.5194
  • Rouge2: 0.2107
  • Rougel: 0.2437
  • Rougelsum: 0.2437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
1.8152 3.65 500 1.7956 0.5095 0.2040 0.2382 0.2381
1.6981 3.66 1000 1.7624 0.5194 0.2107 0.2437 0.2437

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.10.0+cu102
  • Datasets 2.13.1
  • Tokenizers 0.13.3