metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- govreport-summarization
metrics:
- rouge
model-index:
- name: led-large-16384-govreport
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: govreport-summarization
type: govreport-summarization
config: document
split: validation
args: document
metrics:
- name: Rouge1
type: rouge
value: 0.5194151586540673
led-large-16384-govreport
This model is a fine-tuned version of allenai/led-base-16384 on the govreport-summarization dataset. It achieves the following results on the evaluation set:
- Loss: 1.7624
- Rouge1: 0.5194
- Rouge2: 0.2107
- Rougel: 0.2437
- Rougelsum: 0.2437
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
1.8152 | 3.65 | 500 | 1.7956 | 0.5095 | 0.2040 | 0.2382 | 0.2381 |
1.6981 | 3.66 | 1000 | 1.7624 | 0.5194 | 0.2107 | 0.2437 | 0.2437 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.10.0+cu102
- Datasets 2.13.1
- Tokenizers 0.13.3