File size: 6,756 Bytes
e4eb197 05ee77f e4eb197 5fde500 e4eb197 5fde500 efe85b7 e4eb197 05ee77f efe85b7 e4eb197 05ee77f e4eb197 efe85b7 5fde500 efe85b7 5fde500 e4eb197 05ee77f e4eb197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- govreport-summarization
metrics:
- rouge
model-index:
- name: led-large-16384-govreport
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: govreport-summarization
type: govreport-summarization
config: document
split: validation
args: document
metrics:
- name: Rouge1
type: rouge
value: 0.5444603858958118
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# led-large-16384-govreport
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the govreport-summarization dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1142
- Rouge1: 0.5445
- Rouge2: 0.2225
- Rougel: 0.2578
- Rougelsum: 0.2579
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
| 1.8152 | 3.65 | 500 | 1.7956 | 0.5095 | 0.2040 | 0.2382 | 0.2381 |
| 1.6981 | 3.66 | 1000 | 1.7624 | 0.5194 | 0.2107 | 0.2437 | 0.2437 |
| 1.7048 | 5.49 | 1500 | 1.7448 | 0.5253 | 0.2149 | 0.2467 | 0.2467 |
| 1.6469 | 7.32 | 2000 | 1.7416 | 0.5299 | 0.2177 | 0.2499 | 0.2500 |
| 1.6465 | 9.15 | 2500 | 1.7318 | 0.5299 | 0.2160 | 0.2476 | 0.2478 |
| 1.578 | 10.98 | 3000 | 1.7254 | 0.5321 | 0.2192 | 0.2529 | 0.2530 |
| 1.5631 | 12.81 | 3500 | 1.7189 | 0.5309 | 0.2170 | 0.2520 | 0.2520 |
| 1.5641 | 14.63 | 4000 | 1.7152 | 0.5343 | 0.2198 | 0.2550 | 0.2550 |
| 1.4753 | 16.48 | 4500 | 1.7181 | 0.5305 | 0.2179 | 0.2539 | 0.2542 |
| 1.4792 | 18.3 | 5000 | 1.7152 | 0.5375 | 0.2258 | 0.2586 | 0.2588 |
| 1.4206 | 20.13 | 5500 | 1.7142 | 0.5366 | 0.2216 | 0.2555 | 0.2556 |
| 1.4273 | 21.96 | 6000 | 1.7128 | 0.5364 | 0.2232 | 0.2573 | 0.2573 |
| 1.4078 | 23.78 | 6500 | 1.7114 | 0.5344 | 0.2200 | 0.2562 | 0.2563 |
| 1.355 | 25.61 | 7000 | 1.7153 | 0.5354 | 0.2212 | 0.2564 | 0.2564 |
| 1.409 | 27.44 | 7500 | 1.7119 | 0.5363 | 0.2217 | 0.2568 | 0.2570 |
| 1.3817 | 29.26 | 8000 | 1.7166 | 0.5369 | 0.2229 | 0.2582 | 0.2582 |
| 1.3072 | 31.13 | 8500 | 1.7302 | 0.5379 | 0.2249 | 0.2604 | 0.2603 |
| 1.3172 | 32.96 | 9000 | 1.7121 | 0.5377 | 0.2236 | 0.2588 | 0.2587 |
| 1.277 | 34.78 | 9500 | 1.7255 | 0.5368 | 0.2221 | 0.2584 | 0.2583 |
| 1.1849 | 36.61 | 10000 | 1.7438 | 0.5382 | 0.2244 | 0.2611 | 0.2612 |
| 1.1565 | 38.44 | 10500 | 1.7540 | 0.5414 | 0.2258 | 0.2612 | 0.2612 |
| 1.1415 | 40.26 | 11000 | 1.7707 | 0.5401 | 0.2251 | 0.2618 | 0.2618 |
| 1.085 | 42.09 | 11500 | 1.7791 | 0.5401 | 0.2235 | 0.2595 | 0.2595 |
| 1.088 | 43.92 | 12000 | 1.7869 | 0.5422 | 0.2265 | 0.2616 | 0.2615 |
| 1.0678 | 45.74 | 12500 | 1.8058 | 0.5420 | 0.2253 | 0.2607 | 0.2607 |
| 1.0815 | 47.57 | 13000 | 1.8186 | 0.5405 | 0.2248 | 0.2615 | 0.2615 |
| 1.0456 | 49.4 | 13500 | 1.8346 | 0.5430 | 0.2262 | 0.2619 | 0.2618 |
| 0.9553 | 51.22 | 14000 | 1.8449 | 0.5387 | 0.2239 | 0.2614 | 0.2613 |
| 0.958 | 53.05 | 14500 | 1.8716 | 0.5438 | 0.2274 | 0.2618 | 0.2618 |
| 0.9213 | 54.88 | 15000 | 1.8780 | 0.5438 | 0.2249 | 0.2612 | 0.2612 |
| 0.876 | 56.77 | 15500 | 1.8904 | 0.5439 | 0.2253 | 0.2621 | 0.2621 |
| 0.8967 | 58.6 | 16000 | 1.9085 | 0.5439 | 0.2264 | 0.2634 | 0.2633 |
| 0.9138 | 60.43 | 16500 | 1.9089 | 0.5428 | 0.2242 | 0.2597 | 0.2597 |
| 0.848 | 62.25 | 17000 | 1.9153 | 0.5441 | 0.2242 | 0.2600 | 0.2599 |
| 0.7804 | 64.08 | 17500 | 1.9311 | 0.5422 | 0.2241 | 0.2603 | 0.2604 |
| 0.8326 | 65.91 | 18000 | 1.9391 | 0.5446 | 0.2242 | 0.2604 | 0.2602 |
| 0.8164 | 67.73 | 18500 | 1.9607 | 0.5430 | 0.2245 | 0.2607 | 0.2607 |
| 0.8129 | 69.56 | 19000 | 1.9731 | 0.5456 | 0.2277 | 0.2633 | 0.2633 |
| 0.8049 | 71.39 | 19500 | 1.9804 | 0.5433 | 0.2248 | 0.2618 | 0.2619 |
| 0.7605 | 73.21 | 20000 | 2.0060 | 0.5449 | 0.2256 | 0.2607 | 0.2606 |
| 0.7595 | 75.04 | 20500 | 2.0085 | 0.5425 | 0.2227 | 0.2590 | 0.2590 |
| 0.7837 | 76.87 | 21000 | 2.0073 | 0.5441 | 0.2243 | 0.2608 | 0.2609 |
| 0.7458 | 78.69 | 21500 | 2.0210 | 0.5447 | 0.2260 | 0.2619 | 0.2621 |
| 0.7235 | 80.52 | 22000 | 2.0273 | 0.5445 | 0.2253 | 0.2610 | 0.2611 |
| 0.7405 | 82.35 | 22500 | 2.0405 | 0.5438 | 0.2243 | 0.2600 | 0.2599 |
| 0.7323 | 84.17 | 23000 | 2.0385 | 0.5466 | 0.2256 | 0.2607 | 0.2608 |
| 0.7333 | 86.0 | 23500 | 2.0386 | 0.5447 | 0.2248 | 0.2608 | 0.2609 |
| 0.7067 | 87.83 | 24000 | 2.0582 | 0.5449 | 0.2243 | 0.2601 | 0.2600 |
| 0.7073 | 89.65 | 24500 | 2.0615 | 0.5455 | 0.2253 | 0.2604 | 0.2603 |
| 0.6903 | 91.48 | 25000 | 2.0657 | 0.5482 | 0.2273 | 0.2627 | 0.2626 |
| 0.7203 | 93.31 | 25500 | 2.0574 | 0.5452 | 0.2241 | 0.2596 | 0.2597 |
| 0.6765 | 95.13 | 26000 | 2.0692 | 0.5437 | 0.2249 | 0.2608 | 0.2608 |
| 0.6959 | 96.96 | 26500 | 2.0696 | 0.5442 | 0.2246 | 0.2614 | 0.2614 |
| 0.6918 | 98.79 | 27000 | 2.0701 | 0.5444 | 0.2252 | 0.2615 | 0.2615 |
### Framework versions
- Transformers 4.30.2
- Pytorch 1.10.0+cu102
- Datasets 2.13.1
- Tokenizers 0.13.3
|