File size: 6,756 Bytes
e4eb197
05ee77f
e4eb197
 
 
 
5fde500
 
e4eb197
 
5fde500
 
 
 
 
 
 
 
 
 
 
 
 
efe85b7
e4eb197
 
 
 
 
 
 
05ee77f
 
efe85b7
 
 
 
 
e4eb197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05ee77f
 
e4eb197
 
efe85b7
5fde500
 
 
efe85b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fde500
e4eb197
 
 
 
05ee77f
 
e4eb197
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- govreport-summarization
metrics:
- rouge
model-index:
- name: led-large-16384-govreport
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: govreport-summarization
      type: govreport-summarization
      config: document
      split: validation
      args: document
    metrics:
    - name: Rouge1
      type: rouge
      value: 0.5444603858958118
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# led-large-16384-govreport

This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the govreport-summarization dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1142
- Rouge1: 0.5445
- Rouge2: 0.2225
- Rougel: 0.2578
- Rougelsum: 0.2579

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
| 1.8152        | 3.65  | 500   | 1.7956          | 0.5095 | 0.2040 | 0.2382 | 0.2381    |
| 1.6981        | 3.66  | 1000  | 1.7624          | 0.5194 | 0.2107 | 0.2437 | 0.2437    |
| 1.7048        | 5.49  | 1500  | 1.7448          | 0.5253 | 0.2149 | 0.2467 | 0.2467    |
| 1.6469        | 7.32  | 2000  | 1.7416          | 0.5299 | 0.2177 | 0.2499 | 0.2500    |
| 1.6465        | 9.15  | 2500  | 1.7318          | 0.5299 | 0.2160 | 0.2476 | 0.2478    |
| 1.578         | 10.98 | 3000  | 1.7254          | 0.5321 | 0.2192 | 0.2529 | 0.2530    |
| 1.5631        | 12.81 | 3500  | 1.7189          | 0.5309 | 0.2170 | 0.2520 | 0.2520    |
| 1.5641        | 14.63 | 4000  | 1.7152          | 0.5343 | 0.2198 | 0.2550 | 0.2550    |
| 1.4753        | 16.48 | 4500  | 1.7181          | 0.5305 | 0.2179 | 0.2539 | 0.2542    |
| 1.4792        | 18.3  | 5000  | 1.7152          | 0.5375 | 0.2258 | 0.2586 | 0.2588    |
| 1.4206        | 20.13 | 5500  | 1.7142          | 0.5366 | 0.2216 | 0.2555 | 0.2556    |
| 1.4273        | 21.96 | 6000  | 1.7128          | 0.5364 | 0.2232 | 0.2573 | 0.2573    |
| 1.4078        | 23.78 | 6500  | 1.7114          | 0.5344 | 0.2200 | 0.2562 | 0.2563    |
| 1.355         | 25.61 | 7000  | 1.7153          | 0.5354 | 0.2212 | 0.2564 | 0.2564    |
| 1.409         | 27.44 | 7500  | 1.7119          | 0.5363 | 0.2217 | 0.2568 | 0.2570    |
| 1.3817        | 29.26 | 8000  | 1.7166          | 0.5369 | 0.2229 | 0.2582 | 0.2582    |
| 1.3072        | 31.13 | 8500  | 1.7302          | 0.5379 | 0.2249 | 0.2604 | 0.2603    |
| 1.3172        | 32.96 | 9000  | 1.7121          | 0.5377 | 0.2236 | 0.2588 | 0.2587    |
| 1.277         | 34.78 | 9500  | 1.7255          | 0.5368 | 0.2221 | 0.2584 | 0.2583    |
| 1.1849        | 36.61 | 10000 | 1.7438          | 0.5382 | 0.2244 | 0.2611 | 0.2612    |
| 1.1565        | 38.44 | 10500 | 1.7540          | 0.5414 | 0.2258 | 0.2612 | 0.2612    |
| 1.1415        | 40.26 | 11000 | 1.7707          | 0.5401 | 0.2251 | 0.2618 | 0.2618    |
| 1.085         | 42.09 | 11500 | 1.7791          | 0.5401 | 0.2235 | 0.2595 | 0.2595    |
| 1.088         | 43.92 | 12000 | 1.7869          | 0.5422 | 0.2265 | 0.2616 | 0.2615    |
| 1.0678        | 45.74 | 12500 | 1.8058          | 0.5420 | 0.2253 | 0.2607 | 0.2607    |
| 1.0815        | 47.57 | 13000 | 1.8186          | 0.5405 | 0.2248 | 0.2615 | 0.2615    |
| 1.0456        | 49.4  | 13500 | 1.8346          | 0.5430 | 0.2262 | 0.2619 | 0.2618    |
| 0.9553        | 51.22 | 14000 | 1.8449          | 0.5387 | 0.2239 | 0.2614 | 0.2613    |
| 0.958         | 53.05 | 14500 | 1.8716          | 0.5438 | 0.2274 | 0.2618 | 0.2618    |
| 0.9213        | 54.88 | 15000 | 1.8780          | 0.5438 | 0.2249 | 0.2612 | 0.2612    |
| 0.876         | 56.77 | 15500 | 1.8904          | 0.5439 | 0.2253 | 0.2621 | 0.2621    |
| 0.8967        | 58.6  | 16000 | 1.9085          | 0.5439 | 0.2264 | 0.2634 | 0.2633    |
| 0.9138        | 60.43 | 16500 | 1.9089          | 0.5428 | 0.2242 | 0.2597 | 0.2597    |
| 0.848         | 62.25 | 17000 | 1.9153          | 0.5441 | 0.2242 | 0.2600 | 0.2599    |
| 0.7804        | 64.08 | 17500 | 1.9311          | 0.5422 | 0.2241 | 0.2603 | 0.2604    |
| 0.8326        | 65.91 | 18000 | 1.9391          | 0.5446 | 0.2242 | 0.2604 | 0.2602    |
| 0.8164        | 67.73 | 18500 | 1.9607          | 0.5430 | 0.2245 | 0.2607 | 0.2607    |
| 0.8129        | 69.56 | 19000 | 1.9731          | 0.5456 | 0.2277 | 0.2633 | 0.2633    |
| 0.8049        | 71.39 | 19500 | 1.9804          | 0.5433 | 0.2248 | 0.2618 | 0.2619    |
| 0.7605        | 73.21 | 20000 | 2.0060          | 0.5449 | 0.2256 | 0.2607 | 0.2606    |
| 0.7595        | 75.04 | 20500 | 2.0085          | 0.5425 | 0.2227 | 0.2590 | 0.2590    |
| 0.7837        | 76.87 | 21000 | 2.0073          | 0.5441 | 0.2243 | 0.2608 | 0.2609    |
| 0.7458        | 78.69 | 21500 | 2.0210          | 0.5447 | 0.2260 | 0.2619 | 0.2621    |
| 0.7235        | 80.52 | 22000 | 2.0273          | 0.5445 | 0.2253 | 0.2610 | 0.2611    |
| 0.7405        | 82.35 | 22500 | 2.0405          | 0.5438 | 0.2243 | 0.2600 | 0.2599    |
| 0.7323        | 84.17 | 23000 | 2.0385          | 0.5466 | 0.2256 | 0.2607 | 0.2608    |
| 0.7333        | 86.0  | 23500 | 2.0386          | 0.5447 | 0.2248 | 0.2608 | 0.2609    |
| 0.7067        | 87.83 | 24000 | 2.0582          | 0.5449 | 0.2243 | 0.2601 | 0.2600    |
| 0.7073        | 89.65 | 24500 | 2.0615          | 0.5455 | 0.2253 | 0.2604 | 0.2603    |
| 0.6903        | 91.48 | 25000 | 2.0657          | 0.5482 | 0.2273 | 0.2627 | 0.2626    |
| 0.7203        | 93.31 | 25500 | 2.0574          | 0.5452 | 0.2241 | 0.2596 | 0.2597    |
| 0.6765        | 95.13 | 26000 | 2.0692          | 0.5437 | 0.2249 | 0.2608 | 0.2608    |
| 0.6959        | 96.96 | 26500 | 2.0696          | 0.5442 | 0.2246 | 0.2614 | 0.2614    |
| 0.6918        | 98.79 | 27000 | 2.0701          | 0.5444 | 0.2252 | 0.2615 | 0.2615    |


### Framework versions

- Transformers 4.30.2
- Pytorch 1.10.0+cu102
- Datasets 2.13.1
- Tokenizers 0.13.3