Xmm commited on
Commit
efe85b7
1 Parent(s): 726be71

End of training

Browse files
Files changed (1) hide show
  1. README.md +63 -25
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Rouge1
23
  type: rouge
24
- value: 0.5398781387812484
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,11 +31,11 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the govreport-summarization dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 1.7442
35
- - Rouge1: 0.5399
36
- - Rouge2: 0.2253
37
- - Rougel: 0.2582
38
- - Rougelsum: 0.2582
39
 
40
  ## Model description
41
 
@@ -62,28 +62,66 @@ The following hyperparameters were used during training:
62
  - total_train_batch_size: 64
63
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
  - lr_scheduler_type: linear
65
- - num_epochs: 30
66
 
67
  ### Training results
68
 
69
- | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
70
- |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
71
- | 1.8152 | 3.65 | 500 | 1.7956 | 0.5095 | 0.2040 | 0.2382 | 0.2381 |
72
- | 1.6981 | 3.66 | 1000 | 1.7624 | 0.5194 | 0.2107 | 0.2437 | 0.2437 |
73
- | 1.7048 | 5.49 | 1500 | 1.7448 | 0.5253 | 0.2149 | 0.2467 | 0.2467 |
74
- | 1.6469 | 7.32 | 2000 | 1.7416 | 0.5299 | 0.2177 | 0.2499 | 0.2500 |
75
- | 1.6465 | 9.15 | 2500 | 1.7318 | 0.5299 | 0.2160 | 0.2476 | 0.2478 |
76
- | 1.578 | 10.98 | 3000 | 1.7254 | 0.5321 | 0.2192 | 0.2529 | 0.2530 |
77
- | 1.5631 | 12.81 | 3500 | 1.7189 | 0.5309 | 0.2170 | 0.2520 | 0.2520 |
78
- | 1.5641 | 14.63 | 4000 | 1.7152 | 0.5343 | 0.2198 | 0.2550 | 0.2550 |
79
- | 1.4753 | 16.48 | 4500 | 1.7181 | 0.5305 | 0.2179 | 0.2539 | 0.2542 |
80
- | 1.4792 | 18.3 | 5000 | 1.7152 | 0.5375 | 0.2258 | 0.2586 | 0.2588 |
81
- | 1.4206 | 20.13 | 5500 | 1.7142 | 0.5366 | 0.2216 | 0.2555 | 0.2556 |
82
- | 1.4273 | 21.96 | 6000 | 1.7128 | 0.5364 | 0.2232 | 0.2573 | 0.2573 |
83
- | 1.4078 | 23.78 | 6500 | 1.7114 | 0.5344 | 0.2200 | 0.2562 | 0.2563 |
84
- | 1.355 | 25.61 | 7000 | 1.7153 | 0.5354 | 0.2212 | 0.2564 | 0.2564 |
85
- | 1.409 | 27.44 | 7500 | 1.7119 | 0.5363 | 0.2217 | 0.2568 | 0.2570 |
86
- | 1.3817 | 29.26 | 8000 | 1.7166 | 0.5369 | 0.2229 | 0.2582 | 0.2582 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
 
89
  ### Framework versions
 
21
  metrics:
22
  - name: Rouge1
23
  type: rouge
24
+ value: 0.5444603858958118
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the govreport-summarization dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 2.1142
35
+ - Rouge1: 0.5445
36
+ - Rouge2: 0.2225
37
+ - Rougel: 0.2578
38
+ - Rougelsum: 0.2579
39
 
40
  ## Model description
41
 
 
62
  - total_train_batch_size: 64
63
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
  - lr_scheduler_type: linear
65
+ - num_epochs: 100
66
 
67
  ### Training results
68
 
69
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
70
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
71
+ | 1.8152 | 3.65 | 500 | 1.7956 | 0.5095 | 0.2040 | 0.2382 | 0.2381 |
72
+ | 1.6981 | 3.66 | 1000 | 1.7624 | 0.5194 | 0.2107 | 0.2437 | 0.2437 |
73
+ | 1.7048 | 5.49 | 1500 | 1.7448 | 0.5253 | 0.2149 | 0.2467 | 0.2467 |
74
+ | 1.6469 | 7.32 | 2000 | 1.7416 | 0.5299 | 0.2177 | 0.2499 | 0.2500 |
75
+ | 1.6465 | 9.15 | 2500 | 1.7318 | 0.5299 | 0.2160 | 0.2476 | 0.2478 |
76
+ | 1.578 | 10.98 | 3000 | 1.7254 | 0.5321 | 0.2192 | 0.2529 | 0.2530 |
77
+ | 1.5631 | 12.81 | 3500 | 1.7189 | 0.5309 | 0.2170 | 0.2520 | 0.2520 |
78
+ | 1.5641 | 14.63 | 4000 | 1.7152 | 0.5343 | 0.2198 | 0.2550 | 0.2550 |
79
+ | 1.4753 | 16.48 | 4500 | 1.7181 | 0.5305 | 0.2179 | 0.2539 | 0.2542 |
80
+ | 1.4792 | 18.3 | 5000 | 1.7152 | 0.5375 | 0.2258 | 0.2586 | 0.2588 |
81
+ | 1.4206 | 20.13 | 5500 | 1.7142 | 0.5366 | 0.2216 | 0.2555 | 0.2556 |
82
+ | 1.4273 | 21.96 | 6000 | 1.7128 | 0.5364 | 0.2232 | 0.2573 | 0.2573 |
83
+ | 1.4078 | 23.78 | 6500 | 1.7114 | 0.5344 | 0.2200 | 0.2562 | 0.2563 |
84
+ | 1.355 | 25.61 | 7000 | 1.7153 | 0.5354 | 0.2212 | 0.2564 | 0.2564 |
85
+ | 1.409 | 27.44 | 7500 | 1.7119 | 0.5363 | 0.2217 | 0.2568 | 0.2570 |
86
+ | 1.3817 | 29.26 | 8000 | 1.7166 | 0.5369 | 0.2229 | 0.2582 | 0.2582 |
87
+ | 1.3072 | 31.13 | 8500 | 1.7302 | 0.5379 | 0.2249 | 0.2604 | 0.2603 |
88
+ | 1.3172 | 32.96 | 9000 | 1.7121 | 0.5377 | 0.2236 | 0.2588 | 0.2587 |
89
+ | 1.277 | 34.78 | 9500 | 1.7255 | 0.5368 | 0.2221 | 0.2584 | 0.2583 |
90
+ | 1.1849 | 36.61 | 10000 | 1.7438 | 0.5382 | 0.2244 | 0.2611 | 0.2612 |
91
+ | 1.1565 | 38.44 | 10500 | 1.7540 | 0.5414 | 0.2258 | 0.2612 | 0.2612 |
92
+ | 1.1415 | 40.26 | 11000 | 1.7707 | 0.5401 | 0.2251 | 0.2618 | 0.2618 |
93
+ | 1.085 | 42.09 | 11500 | 1.7791 | 0.5401 | 0.2235 | 0.2595 | 0.2595 |
94
+ | 1.088 | 43.92 | 12000 | 1.7869 | 0.5422 | 0.2265 | 0.2616 | 0.2615 |
95
+ | 1.0678 | 45.74 | 12500 | 1.8058 | 0.5420 | 0.2253 | 0.2607 | 0.2607 |
96
+ | 1.0815 | 47.57 | 13000 | 1.8186 | 0.5405 | 0.2248 | 0.2615 | 0.2615 |
97
+ | 1.0456 | 49.4 | 13500 | 1.8346 | 0.5430 | 0.2262 | 0.2619 | 0.2618 |
98
+ | 0.9553 | 51.22 | 14000 | 1.8449 | 0.5387 | 0.2239 | 0.2614 | 0.2613 |
99
+ | 0.958 | 53.05 | 14500 | 1.8716 | 0.5438 | 0.2274 | 0.2618 | 0.2618 |
100
+ | 0.9213 | 54.88 | 15000 | 1.8780 | 0.5438 | 0.2249 | 0.2612 | 0.2612 |
101
+ | 0.876 | 56.77 | 15500 | 1.8904 | 0.5439 | 0.2253 | 0.2621 | 0.2621 |
102
+ | 0.8967 | 58.6 | 16000 | 1.9085 | 0.5439 | 0.2264 | 0.2634 | 0.2633 |
103
+ | 0.9138 | 60.43 | 16500 | 1.9089 | 0.5428 | 0.2242 | 0.2597 | 0.2597 |
104
+ | 0.848 | 62.25 | 17000 | 1.9153 | 0.5441 | 0.2242 | 0.2600 | 0.2599 |
105
+ | 0.7804 | 64.08 | 17500 | 1.9311 | 0.5422 | 0.2241 | 0.2603 | 0.2604 |
106
+ | 0.8326 | 65.91 | 18000 | 1.9391 | 0.5446 | 0.2242 | 0.2604 | 0.2602 |
107
+ | 0.8164 | 67.73 | 18500 | 1.9607 | 0.5430 | 0.2245 | 0.2607 | 0.2607 |
108
+ | 0.8129 | 69.56 | 19000 | 1.9731 | 0.5456 | 0.2277 | 0.2633 | 0.2633 |
109
+ | 0.8049 | 71.39 | 19500 | 1.9804 | 0.5433 | 0.2248 | 0.2618 | 0.2619 |
110
+ | 0.7605 | 73.21 | 20000 | 2.0060 | 0.5449 | 0.2256 | 0.2607 | 0.2606 |
111
+ | 0.7595 | 75.04 | 20500 | 2.0085 | 0.5425 | 0.2227 | 0.2590 | 0.2590 |
112
+ | 0.7837 | 76.87 | 21000 | 2.0073 | 0.5441 | 0.2243 | 0.2608 | 0.2609 |
113
+ | 0.7458 | 78.69 | 21500 | 2.0210 | 0.5447 | 0.2260 | 0.2619 | 0.2621 |
114
+ | 0.7235 | 80.52 | 22000 | 2.0273 | 0.5445 | 0.2253 | 0.2610 | 0.2611 |
115
+ | 0.7405 | 82.35 | 22500 | 2.0405 | 0.5438 | 0.2243 | 0.2600 | 0.2599 |
116
+ | 0.7323 | 84.17 | 23000 | 2.0385 | 0.5466 | 0.2256 | 0.2607 | 0.2608 |
117
+ | 0.7333 | 86.0 | 23500 | 2.0386 | 0.5447 | 0.2248 | 0.2608 | 0.2609 |
118
+ | 0.7067 | 87.83 | 24000 | 2.0582 | 0.5449 | 0.2243 | 0.2601 | 0.2600 |
119
+ | 0.7073 | 89.65 | 24500 | 2.0615 | 0.5455 | 0.2253 | 0.2604 | 0.2603 |
120
+ | 0.6903 | 91.48 | 25000 | 2.0657 | 0.5482 | 0.2273 | 0.2627 | 0.2626 |
121
+ | 0.7203 | 93.31 | 25500 | 2.0574 | 0.5452 | 0.2241 | 0.2596 | 0.2597 |
122
+ | 0.6765 | 95.13 | 26000 | 2.0692 | 0.5437 | 0.2249 | 0.2608 | 0.2608 |
123
+ | 0.6959 | 96.96 | 26500 | 2.0696 | 0.5442 | 0.2246 | 0.2614 | 0.2614 |
124
+ | 0.6918 | 98.79 | 27000 | 2.0701 | 0.5444 | 0.2252 | 0.2615 | 0.2615 |
125
 
126
 
127
  ### Framework versions