|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
|
|
import numpy as np |
|
from huggingface_hub import PyTorchModelHubMixin |
|
from utils import FileClient, imfrombytes, img2tensor, tensor2img |
|
|
|
class DFE(nn.Module): |
|
""" Dual Feature Extraction |
|
Args: |
|
in_features (int): Number of input channels. |
|
out_features (int): Number of output channels. |
|
""" |
|
def __init__(self, in_features, out_features): |
|
super().__init__() |
|
|
|
self.out_features = out_features |
|
|
|
self.conv = nn.Sequential(nn.Conv2d(in_features, in_features // 5, 1, 1, 0), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(in_features // 5, in_features // 5, 3, 1, 1), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(in_features // 5, out_features, 1, 1, 0)) |
|
|
|
self.linear = nn.Conv2d(in_features, out_features,1,1,0) |
|
|
|
def forward(self, x, x_size): |
|
|
|
B, L, C = x.shape |
|
H, W = x_size |
|
x = x.permute(0, 2, 1).contiguous().view(B, C, H, W) |
|
x = self.conv(x) * self.linear(x) |
|
x = x.view(B, -1, H*W).permute(0,2,1).contiguous() |
|
|
|
return x |
|
|
|
class Mlp(nn.Module): |
|
""" MLP-based Feed-Forward Network |
|
Args: |
|
in_features (int): Number of input channels. |
|
hidden_features (int | None): Number of hidden channels. Default: None |
|
out_features (int | None): Number of output channels. Default: None |
|
act_layer (nn.Module): Activation layer. Default: nn.GELU |
|
drop (float): Dropout rate. Default: 0.0 |
|
""" |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class dwconv(nn.Module): |
|
def __init__(self,hidden_features): |
|
super(dwconv, self).__init__() |
|
self.depthwise_conv = nn.Sequential( |
|
nn.Conv2d(hidden_features, hidden_features, kernel_size=5, stride=1, padding=2, dilation=1, |
|
groups=hidden_features), nn.GELU()) |
|
self.hidden_features = hidden_features |
|
def forward(self,x,x_size): |
|
x = x.transpose(1, 2).view(x.shape[0], self.hidden_features, x_size[0], x_size[1]).contiguous() |
|
x = self.depthwise_conv(x) |
|
x = x.flatten(2).transpose(1, 2).contiguous() |
|
return x |
|
|
|
class ConvFFN(nn.Module): |
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.dwconv = dwconv(hidden_features=hidden_features) |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
|
|
def forward(self, x,x_size): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = x + self.dwconv(x,x_size) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
window_size (tuple): window size |
|
|
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, H, W): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
window_size (tuple): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
|
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
B = int(windows.shape[0] * (window_size[0] * window_size[1]) / (H * W)) |
|
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
class DynamicPosBias(nn.Module): |
|
|
|
""" Dynamic Relative Position Bias. |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of heads for spatial self-correlation. |
|
residual (bool): If True, use residual strage to connect conv. |
|
""" |
|
def __init__(self, dim, num_heads, residual): |
|
super().__init__() |
|
self.residual = residual |
|
self.num_heads = num_heads |
|
self.pos_dim = dim // 4 |
|
self.pos_proj = nn.Linear(2, self.pos_dim) |
|
self.pos1 = nn.Sequential( |
|
nn.LayerNorm(self.pos_dim), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(self.pos_dim, self.pos_dim), |
|
) |
|
self.pos2 = nn.Sequential( |
|
nn.LayerNorm(self.pos_dim), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(self.pos_dim, self.pos_dim) |
|
) |
|
self.pos3 = nn.Sequential( |
|
nn.LayerNorm(self.pos_dim), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(self.pos_dim, self.num_heads) |
|
) |
|
def forward(self, biases): |
|
if self.residual: |
|
pos = self.pos_proj(biases) |
|
pos = pos + self.pos1(pos) |
|
pos = pos + self.pos2(pos) |
|
pos = self.pos3(pos) |
|
else: |
|
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases)))) |
|
return pos |
|
|
|
class SCC(nn.Module): |
|
""" Spatial-Channel Correlation. |
|
Args: |
|
dim (int): Number of input channels. |
|
base_win_size (tuple[int]): The height and width of the base window. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of heads for spatial self-correlation. |
|
value_drop (float, optional): Dropout ratio of value. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
""" |
|
|
|
def __init__(self, dim, base_win_size, window_size, num_heads, value_drop=0., proj_drop=0.): |
|
|
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
|
|
|
|
self.qv = DFE(dim, dim) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
|
|
self.value_drop = nn.Dropout(value_drop) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
min_h = min(self.window_size[0], base_win_size[0]) |
|
min_w = min(self.window_size[1], base_win_size[1]) |
|
self.base_win_size = (min_h, min_w) |
|
|
|
|
|
head_dim = dim // (2*num_heads) |
|
self.scale = head_dim |
|
self.spatial_linear = nn.Linear(self.window_size[0]*self.window_size[1] // (self.base_win_size[0]*self.base_win_size[1]), 1) |
|
|
|
|
|
self.H_sp, self.W_sp = self.window_size |
|
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False) |
|
|
|
def spatial_linear_projection(self, x): |
|
B, num_h, L, C = x.shape |
|
H, W = self.window_size |
|
map_H, map_W = self.base_win_size |
|
|
|
x = x.view(B, num_h, map_H, H//map_H, map_W, W//map_W, C).permute(0,1,2,4,6,3,5).contiguous().view(B, num_h, map_H*map_W, C, -1) |
|
x = self.spatial_linear(x).view(B, num_h, map_H*map_W, C) |
|
return x |
|
|
|
def spatial_self_correlation(self, q, v): |
|
|
|
B, num_head, L, C = q.shape |
|
|
|
|
|
v = self.spatial_linear_projection(v) |
|
|
|
|
|
corr_map = (q @ v.transpose(-2,-1)) / self.scale |
|
|
|
|
|
|
|
position_bias_h = torch.arange(1 - self.H_sp, self.H_sp, device=v.device) |
|
position_bias_w = torch.arange(1 - self.W_sp, self.W_sp, device=v.device) |
|
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w])) |
|
rpe_biases = biases.flatten(1).transpose(0, 1).contiguous().float() |
|
pos = self.pos(rpe_biases) |
|
|
|
|
|
coords_h = torch.arange(self.H_sp, device=v.device) |
|
coords_w = torch.arange(self.W_sp, device=v.device) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += self.H_sp - 1 |
|
relative_coords[:, :, 1] += self.W_sp - 1 |
|
relative_coords[:, :, 0] *= 2 * self.W_sp - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
relative_position_bias = pos[relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1], self.base_win_size[0], self.window_size[0]//self.base_win_size[0], self.base_win_size[1], self.window_size[1]//self.base_win_size[1], -1) |
|
relative_position_bias = relative_position_bias.permute(0,1,3,5,2,4).contiguous().view( |
|
self.window_size[0] * self.window_size[1], self.base_win_size[0]*self.base_win_size[1], self.num_heads, -1).mean(-1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
corr_map = corr_map + relative_position_bias.unsqueeze(0) |
|
|
|
|
|
v_drop = self.value_drop(v) |
|
x = (corr_map @ v_drop).permute(0,2,1,3).contiguous().view(B, L, -1) |
|
|
|
return x |
|
|
|
def channel_self_correlation(self, q, v): |
|
|
|
B, num_head, L, C = q.shape |
|
|
|
|
|
q = q.permute(0,2,1,3).contiguous().view(B, L, num_head*C) |
|
v = v.permute(0,2,1,3).contiguous().view(B, L, num_head*C) |
|
|
|
|
|
corr_map = (q.transpose(-2,-1) @ v) / L |
|
|
|
|
|
v_drop = self.value_drop(v) |
|
x = (corr_map @ v_drop.transpose(-2,-1)).permute(0,2,1).contiguous().view(B, L, -1) |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x: input features with shape of (B, H, W, C) |
|
""" |
|
xB,xH,xW,xC = x.shape |
|
qv = self.qv(x.view(xB,-1,xC), (xH,xW)).view(xB, xH, xW, xC) |
|
|
|
|
|
qv = window_partition(qv, self.window_size) |
|
qv = qv.view(-1, self.window_size[0]*self.window_size[1], xC) |
|
|
|
|
|
B, L, C = qv.shape |
|
qv = qv.view(B, L, 2, self.num_heads, C // (2*self.num_heads)).permute(2,0,3,1,4).contiguous() |
|
q, v = qv[0], qv[1] |
|
|
|
|
|
x_spatial = self.spatial_self_correlation(q, v) |
|
x_spatial = x_spatial.view(-1, self.window_size[0], self.window_size[1], C//2) |
|
x_spatial = window_reverse(x_spatial, (self.window_size[0],self.window_size[1]), xH, xW) |
|
|
|
|
|
x_channel = self.channel_self_correlation(q, v) |
|
x_channel = x_channel.view(-1, self.window_size[0], self.window_size[1], C//2) |
|
x_channel = window_reverse(x_channel, (self.window_size[0], self.window_size[1]), xH, xW) |
|
|
|
|
|
x = torch.cat([x_spatial, x_channel], -1) |
|
x = self.proj_drop(self.proj(x)) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' |
|
|
|
|
|
class HierarchicalTransformerBlock(nn.Module): |
|
""" Hierarchical Transformer Block. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resulotion. |
|
num_heads (int): Number of heads for spatial self-correlation. |
|
base_win_size (tuple[int]): The height and width of the base window. |
|
window_size (tuple[int]): The height and width of the window. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
value_drop (float, optional): Dropout ratio of value. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, dim, input_resolution, num_heads, base_win_size, window_size, |
|
mlp_ratio=4., drop=0., value_drop=0., drop_path=0., |
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.mlp_ratio = mlp_ratio |
|
|
|
|
|
if (window_size[0] > base_win_size[0]) and (window_size[1] > base_win_size[1]): |
|
assert window_size[0] % base_win_size[0] == 0, "please ensure the window size is smaller than or divisible by the base window size" |
|
assert window_size[1] % base_win_size[1] == 0, "please ensure the window size is smaller than or divisible by the base window size" |
|
|
|
|
|
self.norm1 = norm_layer(dim) |
|
self.correlation = SCC( |
|
dim, base_win_size=base_win_size, window_size=self.window_size, num_heads=num_heads, |
|
value_drop=value_drop, proj_drop=drop) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = ConvFFN(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
|
|
def check_image_size(self, x, win_size): |
|
x = x.permute(0,3,1,2).contiguous() |
|
_, _, h, w = x.size() |
|
mod_pad_h = (win_size[0] - h % win_size[0]) % win_size[0] |
|
mod_pad_w = (win_size[1] - w % win_size[1]) % win_size[1] |
|
|
|
if mod_pad_h >= h or mod_pad_w >= w: |
|
pad_h, pad_w = h-1, w-1 |
|
x = F.pad(x, (0, pad_w, 0, pad_h), 'reflect') |
|
else: |
|
pad_h, pad_w = 0, 0 |
|
|
|
mod_pad_h = mod_pad_h - pad_h |
|
mod_pad_w = mod_pad_w - pad_w |
|
|
|
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect') |
|
x = x.permute(0,2,3,1).contiguous() |
|
return x |
|
|
|
def forward(self, x, x_size, win_size): |
|
H, W = x_size |
|
B, L, C = x.shape |
|
|
|
shortcut = x |
|
x = x.view(B, H, W, C) |
|
|
|
|
|
x = self.check_image_size(x, win_size) |
|
_, H_pad, W_pad, _ = x.shape |
|
|
|
x = self.correlation(x) |
|
|
|
|
|
x = x[:, :H, :W, :].contiguous() |
|
|
|
|
|
x = x.view(B, H * W, C) |
|
x = self.norm1(x) |
|
|
|
|
|
x = shortcut + self.drop_path(x) |
|
x = x + self.drop_path(self.norm2(self.mlp(x, x_size))) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ |
|
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}" |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
""" Patch Merging Layer. |
|
Args: |
|
input_resolution (tuple[int]): Resolution of input feature. |
|
dim (int): Number of input channels. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(4 * dim) |
|
|
|
def forward(self, x): |
|
""" |
|
x: B, H*W, C |
|
""" |
|
H, W = self.input_resolution |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
x0 = x[:, 0::2, 0::2, :] |
|
x1 = x[:, 1::2, 0::2, :] |
|
x2 = x[:, 0::2, 1::2, :] |
|
x3 = x[:, 1::2, 1::2, :] |
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
x = x.view(B, -1, 4 * C) |
|
|
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"input_resolution={self.input_resolution}, dim={self.dim}" |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
""" A basic Hierarchical Transformer layer for one stage. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of heads for spatial self-correlation. |
|
base_win_size (tuple[int]): The height and width of the base window. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
value_drop (float, optional): Dropout ratio of value. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8]. |
|
""" |
|
|
|
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size, |
|
mlp_ratio=4., drop=0., value_drop=0.,drop_path=0., norm_layer=nn.LayerNorm, |
|
downsample=None, use_checkpoint=False, hier_win_ratios=[0.5,1,2,4,6,8]): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
self.win_hs = [int(base_win_size[0] * ratio) for ratio in hier_win_ratios] |
|
self.win_ws = [int(base_win_size[1] * ratio) for ratio in hier_win_ratios] |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
HierarchicalTransformerBlock(dim=dim, input_resolution=input_resolution, |
|
num_heads=num_heads, |
|
base_win_size=base_win_size, |
|
window_size=(self.win_hs[i], self.win_ws[i]), |
|
mlp_ratio=mlp_ratio, |
|
drop=drop, value_drop=value_drop, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
norm_layer=norm_layer) |
|
for i in range(depth)]) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, x_size): |
|
|
|
i = 0 |
|
for blk in self.blocks: |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x, x_size, (self.win_hs[i], self.win_ws[i])) |
|
else: |
|
x = blk(x, x_size, (self.win_hs[i], self.win_ws[i])) |
|
i = i + 1 |
|
|
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" |
|
|
|
|
|
class RHTB(nn.Module): |
|
"""Residual Hierarchical Transformer Block (RHTB). |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of heads for spatial self-correlation. |
|
base_win_size (tuple[int]): The height and width of the base window. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
value_drop (float, optional): Dropout ratio of value. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
img_size: Input image size. |
|
patch_size: Patch size. |
|
resi_connection: The convolutional block before residual connection. |
|
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8]. |
|
""" |
|
|
|
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size, |
|
mlp_ratio=4., drop=0., value_drop=0., drop_path=0., norm_layer=nn.LayerNorm, |
|
downsample=None, use_checkpoint=False, img_size=224, patch_size=4, |
|
resi_connection='1conv', hier_win_ratios=[0.5,1,2,4,6,8]): |
|
super(RHTB, self).__init__() |
|
|
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
|
|
self.residual_group = BasicLayer(dim=dim, |
|
input_resolution=input_resolution, |
|
depth=depth, |
|
num_heads=num_heads, |
|
base_win_size=base_win_size, |
|
mlp_ratio=mlp_ratio, |
|
drop=drop, value_drop=value_drop, |
|
drop_path=drop_path, |
|
norm_layer=norm_layer, |
|
downsample=downsample, |
|
use_checkpoint=use_checkpoint, |
|
hier_win_ratios=hier_win_ratios) |
|
|
|
if resi_connection == '1conv': |
|
self.conv = nn.Conv2d(dim, dim, 3, 1, 1) |
|
elif resi_connection == '3conv': |
|
|
|
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(dim // 4, dim, 3, 1, 1)) |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, |
|
norm_layer=None) |
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, |
|
norm_layer=None) |
|
|
|
def forward(self, x, x_size): |
|
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
r""" Image to Patch Embedding |
|
|
|
Args: |
|
img_size (int): Image size. Default: 224. |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
x = x.flatten(2).transpose(1, 2) |
|
if self.norm is not None: |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class PatchUnEmbed(nn.Module): |
|
r""" Image to Patch Unembedding |
|
|
|
Args: |
|
img_size (int): Image size. Default: 224. |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
def forward(self, x, x_size): |
|
B, HW, C = x.shape |
|
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) |
|
return x |
|
|
|
|
|
class Upsample(nn.Sequential): |
|
"""Upsample module. |
|
|
|
Args: |
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
num_feat (int): Channel number of intermediate features. |
|
""" |
|
|
|
def __init__(self, scale, num_feat): |
|
m = [] |
|
if (scale & (scale - 1)) == 0: |
|
for _ in range(int(math.log(scale, 2))): |
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(2)) |
|
elif scale == 3: |
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(3)) |
|
else: |
|
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') |
|
super(Upsample, self).__init__(*m) |
|
|
|
|
|
class UpsampleOneStep(nn.Sequential): |
|
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) |
|
Used in lightweight SR to save parameters. |
|
|
|
Args: |
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
num_feat (int): Channel number of intermediate features. |
|
|
|
""" |
|
|
|
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): |
|
self.num_feat = num_feat |
|
self.input_resolution = input_resolution |
|
m = [] |
|
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(scale)) |
|
super(UpsampleOneStep, self).__init__(*m) |
|
|
|
|
|
class HiT_SRF(nn.Module, PyTorchModelHubMixin): |
|
""" HiT-SRF network. |
|
|
|
Args: |
|
img_size (int | tuple(int)): Input image size. Default 64 |
|
patch_size (int | tuple(int)): Patch size. Default: 1 |
|
in_chans (int): Number of input image channels. Default: 3 |
|
embed_dim (int): Patch embedding dimension. Default: 96 |
|
depths (tuple(int)): Depth of each Transformer block. |
|
num_heads (tuple(int)): Number of heads for spatial self-correlation in different layers. |
|
base_win_size (tuple[int]): The height and width of the base window. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 |
|
drop_rate (float): Dropout rate. Default: 0 |
|
value_drop_rate (float): Dropout ratio of value. Default: 0.0 |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1 |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False |
|
upscale (int): Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction |
|
img_range (float): Image range. 1. or 255. |
|
upsampler (str): The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None |
|
resi_connection (str): The convolutional block before residual connection. '1conv'/'3conv' |
|
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8]. |
|
""" |
|
|
|
def __init__(self, img_size=64, patch_size=1, in_chans=3, |
|
embed_dim=60, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], |
|
base_win_size=[8,8], mlp_ratio=2., |
|
drop_rate=0., value_drop_rate=0., drop_path_rate=0., |
|
norm_layer=nn.LayerNorm, ape=False, patch_norm=True, |
|
use_checkpoint=False, upscale=4, img_range=1., upsampler='pixelshuffledirect', resi_connection='1conv', |
|
hier_win_ratios=[0.5,1,2,4,6,8], |
|
**kwargs): |
|
super(HiT_SRF, self).__init__() |
|
num_in_ch = in_chans |
|
num_out_ch = in_chans |
|
num_feat = 64 |
|
self.img_range = img_range |
|
if in_chans == 3: |
|
rgb_mean = (0.4488, 0.4371, 0.4040) |
|
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) |
|
else: |
|
self.mean = torch.zeros(1, 1, 1, 1) |
|
self.upscale = upscale |
|
self.upsampler = upsampler |
|
self.base_win_size = base_win_size |
|
|
|
|
|
|
|
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) |
|
|
|
|
|
|
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.ape = ape |
|
self.patch_norm = patch_norm |
|
self.num_features = embed_dim |
|
self.mlp_ratio = mlp_ratio |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
num_patches = self.patch_embed.num_patches |
|
patches_resolution = self.patch_embed.patches_resolution |
|
self.patches_resolution = patches_resolution |
|
|
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
|
|
if self.ape: |
|
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) |
|
trunc_normal_(self.absolute_pos_embed, std=.02) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = RHTB(dim=embed_dim, |
|
input_resolution=(patches_resolution[0], |
|
patches_resolution[1]), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
base_win_size=base_win_size, |
|
mlp_ratio=self.mlp_ratio, |
|
drop=drop_rate, value_drop=value_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=None, |
|
use_checkpoint=use_checkpoint, |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
resi_connection=resi_connection, |
|
hier_win_ratios=hier_win_ratios |
|
) |
|
self.layers.append(layer) |
|
self.norm = norm_layer(self.num_features) |
|
|
|
|
|
if resi_connection == '1conv': |
|
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) |
|
elif resi_connection == '3conv': |
|
|
|
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1)) |
|
|
|
|
|
|
|
if self.upsampler == 'pixelshuffle': |
|
|
|
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), |
|
nn.LeakyReLU(inplace=True)) |
|
self.upsample = Upsample(upscale, num_feat) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
elif self.upsampler == 'pixelshuffledirect': |
|
|
|
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch, |
|
(patches_resolution[0], patches_resolution[1])) |
|
elif self.upsampler == 'nearest+conv': |
|
|
|
assert self.upscale == 4, 'only support x4 now.' |
|
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), |
|
nn.LeakyReLU(inplace=True)) |
|
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
else: |
|
|
|
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'absolute_pos_embed'} |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay_keywords(self): |
|
return {'relative_position_bias_table'} |
|
|
|
|
|
def forward_features(self, x): |
|
x_size = (x.shape[2], x.shape[3]) |
|
x = self.patch_embed(x) |
|
if self.ape: |
|
x = x + self.absolute_pos_embed |
|
x = self.pos_drop(x) |
|
|
|
for layer in self.layers: |
|
x = layer(x, x_size) |
|
|
|
x = self.norm(x) |
|
x = self.patch_unembed(x, x_size) |
|
|
|
return x |
|
|
|
def infer_image(self, image_path, device): |
|
|
|
io_backend_opt = {'type':'disk'} |
|
self.file_client = FileClient(io_backend_opt.pop('type'), **io_backend_opt) |
|
|
|
|
|
lq_path = image_path |
|
img_bytes = self.file_client.get(lq_path, 'lq') |
|
img_lq = imfrombytes(img_bytes, float32=True) |
|
|
|
|
|
x = img2tensor(img_lq, bgr2rgb=True, float32=True)[None,...] |
|
|
|
x= x.to(device) |
|
|
|
out = self(x) |
|
|
|
out = out.cpu() |
|
|
|
out = tensor2img(out) |
|
|
|
return out |
|
|
|
def forward(self, x): |
|
H, W = x.shape[2:] |
|
|
|
self.mean = self.mean.type_as(x) |
|
x = (x - self.mean) * self.img_range |
|
|
|
if self.upsampler == 'pixelshuffle': |
|
|
|
x = self.conv_first(x) |
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
x = self.conv_before_upsample(x) |
|
x = self.conv_last(self.upsample(x)) |
|
elif self.upsampler == 'pixelshuffledirect': |
|
|
|
x = self.conv_first(x) |
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
x = self.upsample(x) |
|
elif self.upsampler == 'nearest+conv': |
|
|
|
x = self.conv_first(x) |
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
x = self.conv_before_upsample(x) |
|
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) |
|
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) |
|
x = self.conv_last(self.lrelu(self.conv_hr(x))) |
|
else: |
|
|
|
x_first = self.conv_first(x) |
|
res = self.conv_after_body(self.forward_features(x_first)) + x_first |
|
x = x + self.conv_last(res) |
|
|
|
x = x / self.img_range + self.mean |
|
|
|
return x[:, :, :H*self.upscale, :W*self.upscale] |
|
|
|
|
|
if __name__ == '__main__': |
|
upscale = 4 |
|
base_win_size = [8, 8] |
|
height = (1024 // upscale // base_win_size[0] + 1) * base_win_size[0] |
|
width = (720 // upscale // base_win_size[1] + 1) * base_win_size[1] |
|
|
|
|
|
model = HiT_SRF(upscale=4, img_size=(height, width), |
|
base_win_size=base_win_size, img_range=1., depths=[6, 6, 6, 6], |
|
embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect') |
|
|
|
params_num = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
print("params: ", params_num) |
|
|
|
|
|
|