hit-sr / hit_srf_arch.py
XiangZ's picture
Update hit_srf_arch.py
6da1fbb verified
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import numpy as np
from huggingface_hub import PyTorchModelHubMixin
from utils import FileClient, imfrombytes, img2tensor, tensor2img
class DFE(nn.Module):
""" Dual Feature Extraction
Args:
in_features (int): Number of input channels.
out_features (int): Number of output channels.
"""
def __init__(self, in_features, out_features):
super().__init__()
self.out_features = out_features
self.conv = nn.Sequential(nn.Conv2d(in_features, in_features // 5, 1, 1, 0),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(in_features // 5, in_features // 5, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(in_features // 5, out_features, 1, 1, 0))
self.linear = nn.Conv2d(in_features, out_features,1,1,0)
def forward(self, x, x_size):
B, L, C = x.shape
H, W = x_size
x = x.permute(0, 2, 1).contiguous().view(B, C, H, W)
x = self.conv(x) * self.linear(x)
x = x.view(B, -1, H*W).permute(0,2,1).contiguous()
return x
class Mlp(nn.Module):
""" MLP-based Feed-Forward Network
Args:
in_features (int): Number of input channels.
hidden_features (int | None): Number of hidden channels. Default: None
out_features (int | None): Number of output channels. Default: None
act_layer (nn.Module): Activation layer. Default: nn.GELU
drop (float): Dropout rate. Default: 0.0
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class dwconv(nn.Module):
def __init__(self,hidden_features):
super(dwconv, self).__init__()
self.depthwise_conv = nn.Sequential(
nn.Conv2d(hidden_features, hidden_features, kernel_size=5, stride=1, padding=2, dilation=1,
groups=hidden_features), nn.GELU())
self.hidden_features = hidden_features
def forward(self,x,x_size):
x = x.transpose(1, 2).view(x.shape[0], self.hidden_features, x_size[0], x_size[1]).contiguous() # b Ph*Pw c
x = self.depthwise_conv(x)
x = x.flatten(2).transpose(1, 2).contiguous()
return x
class ConvFFN(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.dwconv = dwconv(hidden_features=hidden_features)
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x,x_size):
x = self.fc1(x)
x = self.act(x)
x = x + self.dwconv(x,x_size)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (tuple): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (tuple): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] * (window_size[0] * window_size[1]) / (H * W))
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class DynamicPosBias(nn.Module):
# The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
""" Dynamic Relative Position Bias.
Args:
dim (int): Number of input channels.
num_heads (int): Number of heads for spatial self-correlation.
residual (bool): If True, use residual strage to connect conv.
"""
def __init__(self, dim, num_heads, residual):
super().__init__()
self.residual = residual
self.num_heads = num_heads
self.pos_dim = dim // 4
self.pos_proj = nn.Linear(2, self.pos_dim)
self.pos1 = nn.Sequential(
nn.LayerNorm(self.pos_dim),
nn.ReLU(inplace=True),
nn.Linear(self.pos_dim, self.pos_dim),
)
self.pos2 = nn.Sequential(
nn.LayerNorm(self.pos_dim),
nn.ReLU(inplace=True),
nn.Linear(self.pos_dim, self.pos_dim)
)
self.pos3 = nn.Sequential(
nn.LayerNorm(self.pos_dim),
nn.ReLU(inplace=True),
nn.Linear(self.pos_dim, self.num_heads)
)
def forward(self, biases):
if self.residual:
pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
pos = pos + self.pos1(pos)
pos = pos + self.pos2(pos)
pos = self.pos3(pos)
else:
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
return pos
class SCC(nn.Module):
""" Spatial-Channel Correlation.
Args:
dim (int): Number of input channels.
base_win_size (tuple[int]): The height and width of the base window.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of heads for spatial self-correlation.
value_drop (float, optional): Dropout ratio of value. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, base_win_size, window_size, num_heads, value_drop=0., proj_drop=0.):
super().__init__()
# parameters
self.dim = dim
self.window_size = window_size
self.num_heads = num_heads
# feature projection
self.qv = DFE(dim, dim)
self.proj = nn.Linear(dim, dim)
# dropout
self.value_drop = nn.Dropout(value_drop)
self.proj_drop = nn.Dropout(proj_drop)
# base window size
min_h = min(self.window_size[0], base_win_size[0])
min_w = min(self.window_size[1], base_win_size[1])
self.base_win_size = (min_h, min_w)
# normalization factor and spatial linear layer for S-SC
head_dim = dim // (2*num_heads)
self.scale = head_dim
self.spatial_linear = nn.Linear(self.window_size[0]*self.window_size[1] // (self.base_win_size[0]*self.base_win_size[1]), 1)
# define a parameter table of relative position bias
self.H_sp, self.W_sp = self.window_size
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
def spatial_linear_projection(self, x):
B, num_h, L, C = x.shape
H, W = self.window_size
map_H, map_W = self.base_win_size
x = x.view(B, num_h, map_H, H//map_H, map_W, W//map_W, C).permute(0,1,2,4,6,3,5).contiguous().view(B, num_h, map_H*map_W, C, -1)
x = self.spatial_linear(x).view(B, num_h, map_H*map_W, C)
return x
def spatial_self_correlation(self, q, v):
B, num_head, L, C = q.shape
# spatial projection
v = self.spatial_linear_projection(v)
# compute correlation map
corr_map = (q @ v.transpose(-2,-1)) / self.scale
# add relative position bias
# generate mother-set
position_bias_h = torch.arange(1 - self.H_sp, self.H_sp, device=v.device)
position_bias_w = torch.arange(1 - self.W_sp, self.W_sp, device=v.device)
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
rpe_biases = biases.flatten(1).transpose(0, 1).contiguous().float()
pos = self.pos(rpe_biases)
# select position bias
coords_h = torch.arange(self.H_sp, device=v.device)
coords_w = torch.arange(self.W_sp, device=v.device)
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.H_sp - 1
relative_coords[:, :, 1] += self.W_sp - 1
relative_coords[:, :, 0] *= 2 * self.W_sp - 1
relative_position_index = relative_coords.sum(-1)
relative_position_bias = pos[relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.base_win_size[0], self.window_size[0]//self.base_win_size[0], self.base_win_size[1], self.window_size[1]//self.base_win_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(0,1,3,5,2,4).contiguous().view(
self.window_size[0] * self.window_size[1], self.base_win_size[0]*self.base_win_size[1], self.num_heads, -1).mean(-1)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
corr_map = corr_map + relative_position_bias.unsqueeze(0)
# transformation
v_drop = self.value_drop(v)
x = (corr_map @ v_drop).permute(0,2,1,3).contiguous().view(B, L, -1)
return x
def channel_self_correlation(self, q, v):
B, num_head, L, C = q.shape
# apply single head strategy
q = q.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
v = v.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
# compute correlation map
corr_map = (q.transpose(-2,-1) @ v) / L
# transformation
v_drop = self.value_drop(v)
x = (corr_map @ v_drop.transpose(-2,-1)).permute(0,2,1).contiguous().view(B, L, -1)
return x
def forward(self, x):
"""
Args:
x: input features with shape of (B, H, W, C)
"""
xB,xH,xW,xC = x.shape
qv = self.qv(x.view(xB,-1,xC), (xH,xW)).view(xB, xH, xW, xC)
# window partition
qv = window_partition(qv, self.window_size)
qv = qv.view(-1, self.window_size[0]*self.window_size[1], xC)
# qv splitting
B, L, C = qv.shape
qv = qv.view(B, L, 2, self.num_heads, C // (2*self.num_heads)).permute(2,0,3,1,4).contiguous()
q, v = qv[0], qv[1] # B, num_heads, L, C//num_heads
# spatial self-correlation (S-SC)
x_spatial = self.spatial_self_correlation(q, v)
x_spatial = x_spatial.view(-1, self.window_size[0], self.window_size[1], C//2)
x_spatial = window_reverse(x_spatial, (self.window_size[0],self.window_size[1]), xH, xW) # xB xH xW xC
# channel self-correlation (C-SC)
x_channel = self.channel_self_correlation(q, v)
x_channel = x_channel.view(-1, self.window_size[0], self.window_size[1], C//2)
x_channel = window_reverse(x_channel, (self.window_size[0], self.window_size[1]), xH, xW) # xB xH xW xC
# spatial-channel information fusion
x = torch.cat([x_spatial, x_channel], -1)
x = self.proj_drop(self.proj(x))
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
class HierarchicalTransformerBlock(nn.Module):
""" Hierarchical Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of heads for spatial self-correlation.
base_win_size (tuple[int]): The height and width of the base window.
window_size (tuple[int]): The height and width of the window.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
drop (float, optional): Dropout rate. Default: 0.0
value_drop (float, optional): Dropout ratio of value. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, input_resolution, num_heads, base_win_size, window_size,
mlp_ratio=4., drop=0., value_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.mlp_ratio = mlp_ratio
# check window size
if (window_size[0] > base_win_size[0]) and (window_size[1] > base_win_size[1]):
assert window_size[0] % base_win_size[0] == 0, "please ensure the window size is smaller than or divisible by the base window size"
assert window_size[1] % base_win_size[1] == 0, "please ensure the window size is smaller than or divisible by the base window size"
self.norm1 = norm_layer(dim)
self.correlation = SCC(
dim, base_win_size=base_win_size, window_size=self.window_size, num_heads=num_heads,
value_drop=value_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = ConvFFN(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
# self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def check_image_size(self, x, win_size):
x = x.permute(0,3,1,2).contiguous()
_, _, h, w = x.size()
mod_pad_h = (win_size[0] - h % win_size[0]) % win_size[0]
mod_pad_w = (win_size[1] - w % win_size[1]) % win_size[1]
if mod_pad_h >= h or mod_pad_w >= w:
pad_h, pad_w = h-1, w-1
x = F.pad(x, (0, pad_w, 0, pad_h), 'reflect')
else:
pad_h, pad_w = 0, 0
mod_pad_h = mod_pad_h - pad_h
mod_pad_w = mod_pad_w - pad_w
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
x = x.permute(0,2,3,1).contiguous()
return x
def forward(self, x, x_size, win_size):
H, W = x_size
B, L, C = x.shape
shortcut = x
x = x.view(B, H, W, C)
# padding
x = self.check_image_size(x, win_size)
_, H_pad, W_pad, _ = x.shape # shape after padding
x = self.correlation(x)
# unpad
x = x[:, :H, :W, :].contiguous()
# norm
x = x.view(B, H * W, C)
x = self.norm1(x)
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.norm2(self.mlp(x, x_size)))
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
class PatchMerging(nn.Module):
""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
def extra_repr(self) -> str:
return f"input_resolution={self.input_resolution}, dim={self.dim}"
class BasicLayer(nn.Module):
""" A basic Hierarchical Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of heads for spatial self-correlation.
base_win_size (tuple[int]): The height and width of the base window.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
drop (float, optional): Dropout rate. Default: 0.0
value_drop (float, optional): Dropout ratio of value. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
"""
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,
mlp_ratio=4., drop=0., value_drop=0.,drop_path=0., norm_layer=nn.LayerNorm,
downsample=None, use_checkpoint=False, hier_win_ratios=[0.5,1,2,4,6,8]):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
self.win_hs = [int(base_win_size[0] * ratio) for ratio in hier_win_ratios]
self.win_ws = [int(base_win_size[1] * ratio) for ratio in hier_win_ratios]
# build blocks
self.blocks = nn.ModuleList([
HierarchicalTransformerBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads,
base_win_size=base_win_size,
window_size=(self.win_hs[i], self.win_ws[i]),
mlp_ratio=mlp_ratio,
drop=drop, value_drop=value_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x, x_size):
i = 0
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, x_size, (self.win_hs[i], self.win_ws[i]))
else:
x = blk(x, x_size, (self.win_hs[i], self.win_ws[i]))
i = i + 1
if self.downsample is not None:
x = self.downsample(x)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
class RHTB(nn.Module):
"""Residual Hierarchical Transformer Block (RHTB).
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of heads for spatial self-correlation.
base_win_size (tuple[int]): The height and width of the base window.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
drop (float, optional): Dropout rate. Default: 0.0
value_drop (float, optional): Dropout ratio of value. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
img_size: Input image size.
patch_size: Patch size.
resi_connection: The convolutional block before residual connection.
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
"""
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,
mlp_ratio=4., drop=0., value_drop=0., drop_path=0., norm_layer=nn.LayerNorm,
downsample=None, use_checkpoint=False, img_size=224, patch_size=4,
resi_connection='1conv', hier_win_ratios=[0.5,1,2,4,6,8]):
super(RHTB, self).__init__()
self.dim = dim
self.input_resolution = input_resolution
self.residual_group = BasicLayer(dim=dim,
input_resolution=input_resolution,
depth=depth,
num_heads=num_heads,
base_win_size=base_win_size,
mlp_ratio=mlp_ratio,
drop=drop, value_drop=value_drop,
drop_path=drop_path,
norm_layer=norm_layer,
downsample=downsample,
use_checkpoint=use_checkpoint,
hier_win_ratios=hier_win_ratios)
if resi_connection == '1conv':
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
elif resi_connection == '3conv':
# to save parameters and memory
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(dim // 4, dim, 3, 1, 1))
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
norm_layer=None)
self.patch_unembed = PatchUnEmbed(
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
norm_layer=None)
def forward(self, x, x_size):
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
if self.norm is not None:
x = self.norm(x)
return x
class PatchUnEmbed(nn.Module):
r""" Image to Patch Unembedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
def forward(self, x, x_size):
B, HW, C = x.shape
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
return x
class Upsample(nn.Sequential):
"""Upsample module.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat):
m = []
if (scale & (scale - 1)) == 0: # scale = 2^n
for _ in range(int(math.log(scale, 2))):
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(2))
elif scale == 3:
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(3))
else:
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
super(Upsample, self).__init__(*m)
class UpsampleOneStep(nn.Sequential):
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
Used in lightweight SR to save parameters.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
self.num_feat = num_feat
self.input_resolution = input_resolution
m = []
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
m.append(nn.PixelShuffle(scale))
super(UpsampleOneStep, self).__init__(*m)
class HiT_SRF(nn.Module, PyTorchModelHubMixin):
""" HiT-SRF network.
Args:
img_size (int | tuple(int)): Input image size. Default 64
patch_size (int | tuple(int)): Patch size. Default: 1
in_chans (int): Number of input image channels. Default: 3
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Transformer block.
num_heads (tuple(int)): Number of heads for spatial self-correlation in different layers.
base_win_size (tuple[int]): The height and width of the base window.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
drop_rate (float): Dropout rate. Default: 0
value_drop_rate (float): Dropout ratio of value. Default: 0.0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
upscale (int): Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
img_range (float): Image range. 1. or 255.
upsampler (str): The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
resi_connection (str): The convolutional block before residual connection. '1conv'/'3conv'
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
"""
def __init__(self, img_size=64, patch_size=1, in_chans=3,
embed_dim=60, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
base_win_size=[8,8], mlp_ratio=2.,
drop_rate=0., value_drop_rate=0., drop_path_rate=0.,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, upscale=4, img_range=1., upsampler='pixelshuffledirect', resi_connection='1conv',
hier_win_ratios=[0.5,1,2,4,6,8],
**kwargs):
super(HiT_SRF, self).__init__()
num_in_ch = in_chans
num_out_ch = in_chans
num_feat = 64
self.img_range = img_range
if in_chans == 3:
rgb_mean = (0.4488, 0.4371, 0.4040)
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
else:
self.mean = torch.zeros(1, 1, 1, 1)
self.upscale = upscale
self.upsampler = upsampler
self.base_win_size = base_win_size
#####################################################################################################
################################### 1, shallow feature extraction ###################################
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
#####################################################################################################
################################### 2, deep feature extraction ######################################
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = embed_dim
self.mlp_ratio = mlp_ratio
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# merge non-overlapping patches into image
self.patch_unembed = PatchUnEmbed(
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build Residual Hierarchical Transformer blocks (RHTB)
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = RHTB(dim=embed_dim,
input_resolution=(patches_resolution[0],
patches_resolution[1]),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
base_win_size=base_win_size,
mlp_ratio=self.mlp_ratio,
drop=drop_rate, value_drop=value_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
norm_layer=norm_layer,
downsample=None,
use_checkpoint=use_checkpoint,
img_size=img_size,
patch_size=patch_size,
resi_connection=resi_connection,
hier_win_ratios=hier_win_ratios
)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
# build the last conv layer in deep feature extraction
if resi_connection == '1conv':
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
elif resi_connection == '3conv':
# to save parameters and memory
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
#####################################################################################################
################################ 3, high quality image reconstruction ################################
if self.upsampler == 'pixelshuffle':
# for classical SR
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
nn.LeakyReLU(inplace=True))
self.upsample = Upsample(upscale, num_feat)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
elif self.upsampler == 'pixelshuffledirect':
# for lightweight SR (to save parameters)
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
(patches_resolution[0], patches_resolution[1]))
elif self.upsampler == 'nearest+conv':
# for real-world SR (less artifacts)
assert self.upscale == 4, 'only support x4 now.'
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
nn.LeakyReLU(inplace=True))
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
else:
# for image denoising and JPEG compression artifact reduction
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
def forward_features(self, x):
x_size = (x.shape[2], x.shape[3])
x = self.patch_embed(x)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x, x_size)
x = self.norm(x) # B L C
x = self.patch_unembed(x, x_size)
return x
def infer_image(self, image_path, device):
io_backend_opt = {'type':'disk'}
self.file_client = FileClient(io_backend_opt.pop('type'), **io_backend_opt)
# load lq image
lq_path = image_path
img_bytes = self.file_client.get(lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
# BGR to RGB, HWC to CHW, numpy to tensor
x = img2tensor(img_lq, bgr2rgb=True, float32=True)[None,...]
x= x.to(device)
out = self(x)
out = out.cpu()
out = tensor2img(out)
return out
def forward(self, x):
H, W = x.shape[2:]
self.mean = self.mean.type_as(x)
x = (x - self.mean) * self.img_range
if self.upsampler == 'pixelshuffle':
# for classical SR
x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x)) + x
x = self.conv_before_upsample(x)
x = self.conv_last(self.upsample(x))
elif self.upsampler == 'pixelshuffledirect':
# for lightweight SR
x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x)) + x
x = self.upsample(x)
elif self.upsampler == 'nearest+conv':
# for real-world SR
x = self.conv_first(x)
x = self.conv_after_body(self.forward_features(x)) + x
x = self.conv_before_upsample(x)
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
x = self.conv_last(self.lrelu(self.conv_hr(x)))
else:
# for image denoising and JPEG compression artifact reduction
x_first = self.conv_first(x)
res = self.conv_after_body(self.forward_features(x_first)) + x_first
x = x + self.conv_last(res)
x = x / self.img_range + self.mean
return x[:, :, :H*self.upscale, :W*self.upscale]
if __name__ == '__main__':
upscale = 4
base_win_size = [8, 8]
height = (1024 // upscale // base_win_size[0] + 1) * base_win_size[0]
width = (720 // upscale // base_win_size[1] + 1) * base_win_size[1]
## HiT-SIR
model = HiT_SRF(upscale=4, img_size=(height, width),
base_win_size=base_win_size, img_range=1., depths=[6, 6, 6, 6],
embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
params_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("params: ", params_num)