Update hit_srf_arch.py
Browse files- hit_srf_arch.py +945 -947
hit_srf_arch.py
CHANGED
@@ -1,947 +1,945 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
import torch.utils.checkpoint as checkpoint
|
6 |
-
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
from huggingface_hub import PyTorchModelHubMixin
|
10 |
-
from utils import FileClient, imfrombytes, img2tensor, tensor2img
|
11 |
-
|
12 |
-
class DFE(nn.Module):
|
13 |
-
""" Dual Feature Extraction
|
14 |
-
Args:
|
15 |
-
in_features (int): Number of input channels.
|
16 |
-
out_features (int): Number of output channels.
|
17 |
-
"""
|
18 |
-
def __init__(self, in_features, out_features):
|
19 |
-
super().__init__()
|
20 |
-
|
21 |
-
self.out_features = out_features
|
22 |
-
|
23 |
-
self.conv = nn.Sequential(nn.Conv2d(in_features, in_features // 5, 1, 1, 0),
|
24 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
25 |
-
nn.Conv2d(in_features // 5, in_features // 5, 3, 1, 1),
|
26 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
27 |
-
nn.Conv2d(in_features // 5, out_features, 1, 1, 0))
|
28 |
-
|
29 |
-
self.linear = nn.Conv2d(in_features, out_features,1,1,0)
|
30 |
-
|
31 |
-
def forward(self, x, x_size):
|
32 |
-
|
33 |
-
B, L, C = x.shape
|
34 |
-
H, W = x_size
|
35 |
-
x = x.permute(0, 2, 1).contiguous().view(B, C, H, W)
|
36 |
-
x = self.conv(x) * self.linear(x)
|
37 |
-
x = x.view(B, -1, H*W).permute(0,2,1).contiguous()
|
38 |
-
|
39 |
-
return x
|
40 |
-
|
41 |
-
class Mlp(nn.Module):
|
42 |
-
""" MLP-based Feed-Forward Network
|
43 |
-
Args:
|
44 |
-
in_features (int): Number of input channels.
|
45 |
-
hidden_features (int | None): Number of hidden channels. Default: None
|
46 |
-
out_features (int | None): Number of output channels. Default: None
|
47 |
-
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
48 |
-
drop (float): Dropout rate. Default: 0.0
|
49 |
-
"""
|
50 |
-
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
51 |
-
super().__init__()
|
52 |
-
out_features = out_features or in_features
|
53 |
-
hidden_features = hidden_features or in_features
|
54 |
-
self.fc1 = nn.Linear(in_features, hidden_features)
|
55 |
-
self.act = act_layer()
|
56 |
-
self.fc2 = nn.Linear(hidden_features, out_features)
|
57 |
-
self.drop = nn.Dropout(drop)
|
58 |
-
|
59 |
-
def forward(self, x):
|
60 |
-
x = self.fc1(x)
|
61 |
-
x = self.act(x)
|
62 |
-
x = self.drop(x)
|
63 |
-
x = self.fc2(x)
|
64 |
-
x = self.drop(x)
|
65 |
-
return x
|
66 |
-
|
67 |
-
|
68 |
-
class dwconv(nn.Module):
|
69 |
-
def __init__(self,hidden_features):
|
70 |
-
super(dwconv, self).__init__()
|
71 |
-
self.depthwise_conv = nn.Sequential(
|
72 |
-
nn.Conv2d(hidden_features, hidden_features, kernel_size=5, stride=1, padding=2, dilation=1,
|
73 |
-
groups=hidden_features), nn.GELU())
|
74 |
-
self.hidden_features = hidden_features
|
75 |
-
def forward(self,x,x_size):
|
76 |
-
x = x.transpose(1, 2).view(x.shape[0], self.hidden_features, x_size[0], x_size[1]).contiguous() # b Ph*Pw c
|
77 |
-
x = self.depthwise_conv(x)
|
78 |
-
x = x.flatten(2).transpose(1, 2).contiguous()
|
79 |
-
return x
|
80 |
-
|
81 |
-
class ConvFFN(nn.Module):
|
82 |
-
|
83 |
-
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
84 |
-
super().__init__()
|
85 |
-
out_features = out_features or in_features
|
86 |
-
hidden_features = hidden_features or in_features
|
87 |
-
self.fc1 = nn.Linear(in_features, hidden_features)
|
88 |
-
self.act = act_layer()
|
89 |
-
self.dwconv = dwconv(hidden_features=hidden_features)
|
90 |
-
self.fc2 = nn.Linear(hidden_features, out_features)
|
91 |
-
self.drop = nn.Dropout(drop)
|
92 |
-
|
93 |
-
|
94 |
-
def forward(self, x,x_size):
|
95 |
-
x = self.fc1(x)
|
96 |
-
x = self.act(x)
|
97 |
-
x = x + self.dwconv(x,x_size)
|
98 |
-
x = self.drop(x)
|
99 |
-
x = self.fc2(x)
|
100 |
-
x = self.drop(x)
|
101 |
-
return x
|
102 |
-
|
103 |
-
def window_partition(x, window_size):
|
104 |
-
"""
|
105 |
-
Args:
|
106 |
-
x: (B, H, W, C)
|
107 |
-
window_size (tuple): window size
|
108 |
-
|
109 |
-
Returns:
|
110 |
-
windows: (num_windows*B, window_size, window_size, C)
|
111 |
-
"""
|
112 |
-
B, H, W, C = x.shape
|
113 |
-
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
114 |
-
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
115 |
-
return windows
|
116 |
-
|
117 |
-
|
118 |
-
def window_reverse(windows, window_size, H, W):
|
119 |
-
"""
|
120 |
-
Args:
|
121 |
-
windows: (num_windows*B, window_size, window_size, C)
|
122 |
-
window_size (tuple): Window size
|
123 |
-
H (int): Height of image
|
124 |
-
W (int): Width of image
|
125 |
-
|
126 |
-
Returns:
|
127 |
-
x: (B, H, W, C)
|
128 |
-
"""
|
129 |
-
B = int(windows.shape[0] * (window_size[0] * window_size[1]) / (H * W))
|
130 |
-
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
|
131 |
-
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
132 |
-
return x
|
133 |
-
|
134 |
-
class DynamicPosBias(nn.Module):
|
135 |
-
# The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
|
136 |
-
""" Dynamic Relative Position Bias.
|
137 |
-
Args:
|
138 |
-
dim (int): Number of input channels.
|
139 |
-
num_heads (int): Number of heads for spatial self-correlation.
|
140 |
-
residual (bool): If True, use residual strage to connect conv.
|
141 |
-
"""
|
142 |
-
def __init__(self, dim, num_heads, residual):
|
143 |
-
super().__init__()
|
144 |
-
self.residual = residual
|
145 |
-
self.num_heads = num_heads
|
146 |
-
self.pos_dim = dim // 4
|
147 |
-
self.pos_proj = nn.Linear(2, self.pos_dim)
|
148 |
-
self.pos1 = nn.Sequential(
|
149 |
-
nn.LayerNorm(self.pos_dim),
|
150 |
-
nn.ReLU(inplace=True),
|
151 |
-
nn.Linear(self.pos_dim, self.pos_dim),
|
152 |
-
)
|
153 |
-
self.pos2 = nn.Sequential(
|
154 |
-
nn.LayerNorm(self.pos_dim),
|
155 |
-
nn.ReLU(inplace=True),
|
156 |
-
nn.Linear(self.pos_dim, self.pos_dim)
|
157 |
-
)
|
158 |
-
self.pos3 = nn.Sequential(
|
159 |
-
nn.LayerNorm(self.pos_dim),
|
160 |
-
nn.ReLU(inplace=True),
|
161 |
-
nn.Linear(self.pos_dim, self.num_heads)
|
162 |
-
)
|
163 |
-
def forward(self, biases):
|
164 |
-
if self.residual:
|
165 |
-
pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
|
166 |
-
pos = pos + self.pos1(pos)
|
167 |
-
pos = pos + self.pos2(pos)
|
168 |
-
pos = self.pos3(pos)
|
169 |
-
else:
|
170 |
-
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
|
171 |
-
return pos
|
172 |
-
|
173 |
-
class SCC(nn.Module):
|
174 |
-
""" Spatial-Channel Correlation.
|
175 |
-
Args:
|
176 |
-
dim (int): Number of input channels.
|
177 |
-
base_win_size (tuple[int]): The height and width of the base window.
|
178 |
-
window_size (tuple[int]): The height and width of the window.
|
179 |
-
num_heads (int): Number of heads for spatial self-correlation.
|
180 |
-
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
181 |
-
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
182 |
-
"""
|
183 |
-
|
184 |
-
def __init__(self, dim, base_win_size, window_size, num_heads, value_drop=0., proj_drop=0.):
|
185 |
-
|
186 |
-
super().__init__()
|
187 |
-
# parameters
|
188 |
-
self.dim = dim
|
189 |
-
self.window_size = window_size
|
190 |
-
self.num_heads = num_heads
|
191 |
-
|
192 |
-
# feature projection
|
193 |
-
self.qv = DFE(dim, dim)
|
194 |
-
self.proj = nn.Linear(dim, dim)
|
195 |
-
|
196 |
-
# dropout
|
197 |
-
self.value_drop = nn.Dropout(value_drop)
|
198 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
199 |
-
|
200 |
-
# base window size
|
201 |
-
min_h = min(self.window_size[0], base_win_size[0])
|
202 |
-
min_w = min(self.window_size[1], base_win_size[1])
|
203 |
-
self.base_win_size = (min_h, min_w)
|
204 |
-
|
205 |
-
# normalization factor and spatial linear layer for S-SC
|
206 |
-
head_dim = dim // (2*num_heads)
|
207 |
-
self.scale = head_dim
|
208 |
-
self.spatial_linear = nn.Linear(self.window_size[0]*self.window_size[1] // (self.base_win_size[0]*self.base_win_size[1]), 1)
|
209 |
-
|
210 |
-
# define a parameter table of relative position bias
|
211 |
-
self.H_sp, self.W_sp = self.window_size
|
212 |
-
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
|
213 |
-
|
214 |
-
def spatial_linear_projection(self, x):
|
215 |
-
B, num_h, L, C = x.shape
|
216 |
-
H, W = self.window_size
|
217 |
-
map_H, map_W = self.base_win_size
|
218 |
-
|
219 |
-
x = x.view(B, num_h, map_H, H//map_H, map_W, W//map_W, C).permute(0,1,2,4,6,3,5).contiguous().view(B, num_h, map_H*map_W, C, -1)
|
220 |
-
x = self.spatial_linear(x).view(B, num_h, map_H*map_W, C)
|
221 |
-
return x
|
222 |
-
|
223 |
-
def spatial_self_correlation(self, q, v):
|
224 |
-
|
225 |
-
B, num_head, L, C = q.shape
|
226 |
-
|
227 |
-
# spatial projection
|
228 |
-
v = self.spatial_linear_projection(v)
|
229 |
-
|
230 |
-
# compute correlation map
|
231 |
-
corr_map = (q @ v.transpose(-2,-1)) / self.scale
|
232 |
-
|
233 |
-
# add relative position bias
|
234 |
-
# generate mother-set
|
235 |
-
position_bias_h = torch.arange(1 - self.H_sp, self.H_sp, device=v.device)
|
236 |
-
position_bias_w = torch.arange(1 - self.W_sp, self.W_sp, device=v.device)
|
237 |
-
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
|
238 |
-
rpe_biases = biases.flatten(1).transpose(0, 1).contiguous().float()
|
239 |
-
pos = self.pos(rpe_biases)
|
240 |
-
|
241 |
-
# select position bias
|
242 |
-
coords_h = torch.arange(self.H_sp, device=v.device)
|
243 |
-
coords_w = torch.arange(self.W_sp, device=v.device)
|
244 |
-
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
245 |
-
coords_flatten = torch.flatten(coords, 1)
|
246 |
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
247 |
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
248 |
-
relative_coords[:, :, 0] += self.H_sp - 1
|
249 |
-
relative_coords[:, :, 1] += self.W_sp - 1
|
250 |
-
relative_coords[:, :, 0] *= 2 * self.W_sp - 1
|
251 |
-
relative_position_index = relative_coords.sum(-1)
|
252 |
-
relative_position_bias = pos[relative_position_index.view(-1)].view(
|
253 |
-
self.window_size[0] * self.window_size[1], self.base_win_size[0], self.window_size[0]//self.base_win_size[0], self.base_win_size[1], self.window_size[1]//self.base_win_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
254 |
-
relative_position_bias = relative_position_bias.permute(0,1,3,5,2,4).contiguous().view(
|
255 |
-
self.window_size[0] * self.window_size[1], self.base_win_size[0]*self.base_win_size[1], self.num_heads, -1).mean(-1)
|
256 |
-
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
257 |
-
corr_map = corr_map + relative_position_bias.unsqueeze(0)
|
258 |
-
|
259 |
-
# transformation
|
260 |
-
v_drop = self.value_drop(v)
|
261 |
-
x = (corr_map @ v_drop).permute(0,2,1,3).contiguous().view(B, L, -1)
|
262 |
-
|
263 |
-
return x
|
264 |
-
|
265 |
-
def channel_self_correlation(self, q, v):
|
266 |
-
|
267 |
-
B, num_head, L, C = q.shape
|
268 |
-
|
269 |
-
# apply single head strategy
|
270 |
-
q = q.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
|
271 |
-
v = v.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
|
272 |
-
|
273 |
-
# compute correlation map
|
274 |
-
corr_map = (q.transpose(-2,-1) @ v) / L
|
275 |
-
|
276 |
-
# transformation
|
277 |
-
v_drop = self.value_drop(v)
|
278 |
-
x = (corr_map @ v_drop.transpose(-2,-1)).permute(0,2,1).contiguous().view(B, L, -1)
|
279 |
-
|
280 |
-
return x
|
281 |
-
|
282 |
-
def forward(self, x):
|
283 |
-
"""
|
284 |
-
Args:
|
285 |
-
x: input features with shape of (B, H, W, C)
|
286 |
-
"""
|
287 |
-
xB,xH,xW,xC = x.shape
|
288 |
-
qv = self.qv(x.view(xB,-1,xC), (xH,xW)).view(xB, xH, xW, xC)
|
289 |
-
|
290 |
-
# window partition
|
291 |
-
qv = window_partition(qv, self.window_size)
|
292 |
-
qv = qv.view(-1, self.window_size[0]*self.window_size[1], xC)
|
293 |
-
|
294 |
-
# qv splitting
|
295 |
-
B, L, C = qv.shape
|
296 |
-
qv = qv.view(B, L, 2, self.num_heads, C // (2*self.num_heads)).permute(2,0,3,1,4).contiguous()
|
297 |
-
q, v = qv[0], qv[1] # B, num_heads, L, C//num_heads
|
298 |
-
|
299 |
-
# spatial self-correlation (S-SC)
|
300 |
-
x_spatial = self.spatial_self_correlation(q, v)
|
301 |
-
x_spatial = x_spatial.view(-1, self.window_size[0], self.window_size[1], C//2)
|
302 |
-
x_spatial = window_reverse(x_spatial, (self.window_size[0],self.window_size[1]), xH, xW) # xB xH xW xC
|
303 |
-
|
304 |
-
# channel self-correlation (C-SC)
|
305 |
-
x_channel = self.channel_self_correlation(q, v)
|
306 |
-
x_channel = x_channel.view(-1, self.window_size[0], self.window_size[1], C//2)
|
307 |
-
x_channel = window_reverse(x_channel, (self.window_size[0], self.window_size[1]), xH, xW) # xB xH xW xC
|
308 |
-
|
309 |
-
# spatial-channel information fusion
|
310 |
-
x = torch.cat([x_spatial, x_channel], -1)
|
311 |
-
x = self.proj_drop(self.proj(x))
|
312 |
-
|
313 |
-
return x
|
314 |
-
|
315 |
-
def extra_repr(self) -> str:
|
316 |
-
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
317 |
-
|
318 |
-
|
319 |
-
class HierarchicalTransformerBlock(nn.Module):
|
320 |
-
""" Hierarchical Transformer Block.
|
321 |
-
Args:
|
322 |
-
dim (int): Number of input channels.
|
323 |
-
input_resolution (tuple[int]): Input resulotion.
|
324 |
-
num_heads (int): Number of heads for spatial self-correlation.
|
325 |
-
base_win_size (tuple[int]): The height and width of the base window.
|
326 |
-
window_size (tuple[int]): The height and width of the window.
|
327 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
328 |
-
drop (float, optional): Dropout rate. Default: 0.0
|
329 |
-
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
330 |
-
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
331 |
-
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
332 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
333 |
-
"""
|
334 |
-
|
335 |
-
def __init__(self, dim, input_resolution, num_heads, base_win_size, window_size,
|
336 |
-
mlp_ratio=4., drop=0., value_drop=0., drop_path=0.,
|
337 |
-
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
338 |
-
super().__init__()
|
339 |
-
self.dim = dim
|
340 |
-
self.input_resolution = input_resolution
|
341 |
-
self.num_heads = num_heads
|
342 |
-
self.window_size = window_size
|
343 |
-
self.mlp_ratio = mlp_ratio
|
344 |
-
|
345 |
-
# check window size
|
346 |
-
if (window_size[0] > base_win_size[0]) and (window_size[1] > base_win_size[1]):
|
347 |
-
assert window_size[0] % base_win_size[0] == 0, "please ensure the window size is smaller than or divisible by the base window size"
|
348 |
-
assert window_size[1] % base_win_size[1] == 0, "please ensure the window size is smaller than or divisible by the base window size"
|
349 |
-
|
350 |
-
|
351 |
-
self.norm1 = norm_layer(dim)
|
352 |
-
self.correlation = SCC(
|
353 |
-
dim, base_win_size=base_win_size, window_size=self.window_size, num_heads=num_heads,
|
354 |
-
value_drop=value_drop, proj_drop=drop)
|
355 |
-
|
356 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
357 |
-
self.norm2 = norm_layer(dim)
|
358 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
359 |
-
self.mlp = ConvFFN(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
360 |
-
# self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
361 |
-
|
362 |
-
def check_image_size(self, x, win_size):
|
363 |
-
x = x.permute(0,3,1,2).contiguous()
|
364 |
-
_, _, h, w = x.size()
|
365 |
-
mod_pad_h = (win_size[0] - h % win_size[0]) % win_size[0]
|
366 |
-
mod_pad_w = (win_size[1] - w % win_size[1]) % win_size[1]
|
367 |
-
|
368 |
-
if mod_pad_h >= h or mod_pad_w >= w:
|
369 |
-
pad_h, pad_w = h-1, w-1
|
370 |
-
x = F.pad(x, (0, pad_w, 0, pad_h), 'reflect')
|
371 |
-
else:
|
372 |
-
pad_h, pad_w = 0, 0
|
373 |
-
|
374 |
-
mod_pad_h = mod_pad_h - pad_h
|
375 |
-
mod_pad_w = mod_pad_w - pad_w
|
376 |
-
|
377 |
-
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
378 |
-
x = x.permute(0,2,3,1).contiguous()
|
379 |
-
return x
|
380 |
-
|
381 |
-
def forward(self, x, x_size, win_size):
|
382 |
-
H, W = x_size
|
383 |
-
B, L, C = x.shape
|
384 |
-
|
385 |
-
shortcut = x
|
386 |
-
x = x.view(B, H, W, C)
|
387 |
-
|
388 |
-
# padding
|
389 |
-
x = self.check_image_size(x, win_size)
|
390 |
-
_, H_pad, W_pad, _ = x.shape # shape after padding
|
391 |
-
|
392 |
-
x = self.correlation(x)
|
393 |
-
|
394 |
-
# unpad
|
395 |
-
x = x[:, :H, :W, :].contiguous()
|
396 |
-
|
397 |
-
# norm
|
398 |
-
x = x.view(B, H * W, C)
|
399 |
-
x = self.norm1(x)
|
400 |
-
|
401 |
-
# FFN
|
402 |
-
x = shortcut + self.drop_path(x)
|
403 |
-
x = x + self.drop_path(self.norm2(self.mlp(x, x_size)))
|
404 |
-
|
405 |
-
return x
|
406 |
-
|
407 |
-
def extra_repr(self) -> str:
|
408 |
-
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
409 |
-
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
|
410 |
-
|
411 |
-
|
412 |
-
class PatchMerging(nn.Module):
|
413 |
-
""" Patch Merging Layer.
|
414 |
-
Args:
|
415 |
-
input_resolution (tuple[int]): Resolution of input feature.
|
416 |
-
dim (int): Number of input channels.
|
417 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
418 |
-
"""
|
419 |
-
|
420 |
-
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
421 |
-
super().__init__()
|
422 |
-
self.input_resolution = input_resolution
|
423 |
-
self.dim = dim
|
424 |
-
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
425 |
-
self.norm = norm_layer(4 * dim)
|
426 |
-
|
427 |
-
def forward(self, x):
|
428 |
-
"""
|
429 |
-
x: B, H*W, C
|
430 |
-
"""
|
431 |
-
H, W = self.input_resolution
|
432 |
-
B, L, C = x.shape
|
433 |
-
assert L == H * W, "input feature has wrong size"
|
434 |
-
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
435 |
-
|
436 |
-
x = x.view(B, H, W, C)
|
437 |
-
|
438 |
-
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
439 |
-
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
440 |
-
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
441 |
-
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
442 |
-
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
443 |
-
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
444 |
-
|
445 |
-
x = self.norm(x)
|
446 |
-
x = self.reduction(x)
|
447 |
-
|
448 |
-
return x
|
449 |
-
|
450 |
-
def extra_repr(self) -> str:
|
451 |
-
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
452 |
-
|
453 |
-
|
454 |
-
class BasicLayer(nn.Module):
|
455 |
-
""" A basic Hierarchical Transformer layer for one stage.
|
456 |
-
|
457 |
-
Args:
|
458 |
-
dim (int): Number of input channels.
|
459 |
-
input_resolution (tuple[int]): Input resolution.
|
460 |
-
depth (int): Number of blocks.
|
461 |
-
num_heads (int): Number of heads for spatial self-correlation.
|
462 |
-
base_win_size (tuple[int]): The height and width of the base window.
|
463 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
464 |
-
drop (float, optional): Dropout rate. Default: 0.0
|
465 |
-
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
466 |
-
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
467 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
468 |
-
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
469 |
-
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
470 |
-
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
471 |
-
"""
|
472 |
-
|
473 |
-
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,
|
474 |
-
mlp_ratio=4., drop=0., value_drop=0.,drop_path=0., norm_layer=nn.LayerNorm,
|
475 |
-
downsample=None, use_checkpoint=False, hier_win_ratios=[0.5,1,2,4,6,8]):
|
476 |
-
|
477 |
-
super().__init__()
|
478 |
-
self.dim = dim
|
479 |
-
self.input_resolution = input_resolution
|
480 |
-
self.depth = depth
|
481 |
-
self.use_checkpoint = use_checkpoint
|
482 |
-
|
483 |
-
self.win_hs = [int(base_win_size[0] * ratio) for ratio in hier_win_ratios]
|
484 |
-
self.win_ws = [int(base_win_size[1] * ratio) for ratio in hier_win_ratios]
|
485 |
-
|
486 |
-
# build blocks
|
487 |
-
self.blocks = nn.ModuleList([
|
488 |
-
HierarchicalTransformerBlock(dim=dim, input_resolution=input_resolution,
|
489 |
-
num_heads=num_heads,
|
490 |
-
base_win_size=base_win_size,
|
491 |
-
window_size=(self.win_hs[i], self.win_ws[i]),
|
492 |
-
mlp_ratio=mlp_ratio,
|
493 |
-
drop=drop, value_drop=value_drop,
|
494 |
-
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
495 |
-
norm_layer=norm_layer)
|
496 |
-
for i in range(depth)])
|
497 |
-
|
498 |
-
# patch merging layer
|
499 |
-
if downsample is not None:
|
500 |
-
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
501 |
-
else:
|
502 |
-
self.downsample = None
|
503 |
-
|
504 |
-
def forward(self, x, x_size):
|
505 |
-
|
506 |
-
i = 0
|
507 |
-
for blk in self.blocks:
|
508 |
-
if self.use_checkpoint:
|
509 |
-
x = checkpoint.checkpoint(blk, x, x_size, (self.win_hs[i], self.win_ws[i]))
|
510 |
-
else:
|
511 |
-
x = blk(x, x_size, (self.win_hs[i], self.win_ws[i]))
|
512 |
-
i = i + 1
|
513 |
-
|
514 |
-
if self.downsample is not None:
|
515 |
-
x = self.downsample(x)
|
516 |
-
return x
|
517 |
-
|
518 |
-
def extra_repr(self) -> str:
|
519 |
-
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
520 |
-
|
521 |
-
|
522 |
-
class RHTB(nn.Module):
|
523 |
-
"""Residual Hierarchical Transformer Block (RHTB).
|
524 |
-
Args:
|
525 |
-
dim (int): Number of input channels.
|
526 |
-
input_resolution (tuple[int]): Input resolution.
|
527 |
-
depth (int): Number of blocks.
|
528 |
-
num_heads (int): Number of heads for spatial self-correlation.
|
529 |
-
base_win_size (tuple[int]): The height and width of the base window.
|
530 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
531 |
-
drop (float, optional): Dropout rate. Default: 0.0
|
532 |
-
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
533 |
-
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
534 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
535 |
-
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
536 |
-
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
537 |
-
img_size: Input image size.
|
538 |
-
patch_size: Patch size.
|
539 |
-
resi_connection: The convolutional block before residual connection.
|
540 |
-
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
541 |
-
"""
|
542 |
-
|
543 |
-
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,
|
544 |
-
mlp_ratio=4., drop=0., value_drop=0., drop_path=0., norm_layer=nn.LayerNorm,
|
545 |
-
downsample=None, use_checkpoint=False, img_size=224, patch_size=4,
|
546 |
-
resi_connection='1conv', hier_win_ratios=[0.5,1,2,4,6,8]):
|
547 |
-
super(RHTB, self).__init__()
|
548 |
-
|
549 |
-
self.dim = dim
|
550 |
-
self.input_resolution = input_resolution
|
551 |
-
|
552 |
-
self.residual_group = BasicLayer(dim=dim,
|
553 |
-
input_resolution=input_resolution,
|
554 |
-
depth=depth,
|
555 |
-
num_heads=num_heads,
|
556 |
-
base_win_size=base_win_size,
|
557 |
-
mlp_ratio=mlp_ratio,
|
558 |
-
drop=drop, value_drop=value_drop,
|
559 |
-
drop_path=drop_path,
|
560 |
-
norm_layer=norm_layer,
|
561 |
-
downsample=downsample,
|
562 |
-
use_checkpoint=use_checkpoint,
|
563 |
-
hier_win_ratios=hier_win_ratios)
|
564 |
-
|
565 |
-
if resi_connection == '1conv':
|
566 |
-
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
567 |
-
elif resi_connection == '3conv':
|
568 |
-
# to save parameters and memory
|
569 |
-
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
570 |
-
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
|
571 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
572 |
-
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
573 |
-
|
574 |
-
self.patch_embed = PatchEmbed(
|
575 |
-
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
576 |
-
norm_layer=None)
|
577 |
-
|
578 |
-
self.patch_unembed = PatchUnEmbed(
|
579 |
-
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
580 |
-
norm_layer=None)
|
581 |
-
|
582 |
-
def forward(self, x, x_size):
|
583 |
-
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
|
584 |
-
|
585 |
-
|
586 |
-
class PatchEmbed(nn.Module):
|
587 |
-
r""" Image to Patch Embedding
|
588 |
-
|
589 |
-
Args:
|
590 |
-
img_size (int): Image size. Default: 224.
|
591 |
-
patch_size (int): Patch token size. Default: 4.
|
592 |
-
in_chans (int): Number of input image channels. Default: 3.
|
593 |
-
embed_dim (int): Number of linear projection output channels. Default: 96.
|
594 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
595 |
-
"""
|
596 |
-
|
597 |
-
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
598 |
-
super().__init__()
|
599 |
-
img_size = to_2tuple(img_size)
|
600 |
-
patch_size = to_2tuple(patch_size)
|
601 |
-
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
602 |
-
self.img_size = img_size
|
603 |
-
self.patch_size = patch_size
|
604 |
-
self.patches_resolution = patches_resolution
|
605 |
-
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
606 |
-
|
607 |
-
self.in_chans = in_chans
|
608 |
-
self.embed_dim = embed_dim
|
609 |
-
|
610 |
-
if norm_layer is not None:
|
611 |
-
self.norm = norm_layer(embed_dim)
|
612 |
-
else:
|
613 |
-
self.norm = None
|
614 |
-
|
615 |
-
def forward(self, x):
|
616 |
-
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
|
617 |
-
if self.norm is not None:
|
618 |
-
x = self.norm(x)
|
619 |
-
return x
|
620 |
-
|
621 |
-
|
622 |
-
class PatchUnEmbed(nn.Module):
|
623 |
-
r""" Image to Patch Unembedding
|
624 |
-
|
625 |
-
Args:
|
626 |
-
img_size (int): Image size. Default: 224.
|
627 |
-
patch_size (int): Patch token size. Default: 4.
|
628 |
-
in_chans (int): Number of input image channels. Default: 3.
|
629 |
-
embed_dim (int): Number of linear projection output channels. Default: 96.
|
630 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
631 |
-
"""
|
632 |
-
|
633 |
-
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
634 |
-
super().__init__()
|
635 |
-
img_size = to_2tuple(img_size)
|
636 |
-
patch_size = to_2tuple(patch_size)
|
637 |
-
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
638 |
-
self.img_size = img_size
|
639 |
-
self.patch_size = patch_size
|
640 |
-
self.patches_resolution = patches_resolution
|
641 |
-
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
642 |
-
|
643 |
-
self.in_chans = in_chans
|
644 |
-
self.embed_dim = embed_dim
|
645 |
-
|
646 |
-
def forward(self, x, x_size):
|
647 |
-
B, HW, C = x.shape
|
648 |
-
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
|
649 |
-
return x
|
650 |
-
|
651 |
-
|
652 |
-
class Upsample(nn.Sequential):
|
653 |
-
"""Upsample module.
|
654 |
-
|
655 |
-
Args:
|
656 |
-
scale (int): Scale factor. Supported scales: 2^n and 3.
|
657 |
-
num_feat (int): Channel number of intermediate features.
|
658 |
-
"""
|
659 |
-
|
660 |
-
def __init__(self, scale, num_feat):
|
661 |
-
m = []
|
662 |
-
if (scale & (scale - 1)) == 0: # scale = 2^n
|
663 |
-
for _ in range(int(math.log(scale, 2))):
|
664 |
-
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
665 |
-
m.append(nn.PixelShuffle(2))
|
666 |
-
elif scale == 3:
|
667 |
-
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
668 |
-
m.append(nn.PixelShuffle(3))
|
669 |
-
else:
|
670 |
-
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
671 |
-
super(Upsample, self).__init__(*m)
|
672 |
-
|
673 |
-
|
674 |
-
class UpsampleOneStep(nn.Sequential):
|
675 |
-
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
676 |
-
Used in lightweight SR to save parameters.
|
677 |
-
|
678 |
-
Args:
|
679 |
-
scale (int): Scale factor. Supported scales: 2^n and 3.
|
680 |
-
num_feat (int): Channel number of intermediate features.
|
681 |
-
|
682 |
-
"""
|
683 |
-
|
684 |
-
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
685 |
-
self.num_feat = num_feat
|
686 |
-
self.input_resolution = input_resolution
|
687 |
-
m = []
|
688 |
-
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
|
689 |
-
m.append(nn.PixelShuffle(scale))
|
690 |
-
super(UpsampleOneStep, self).__init__(*m)
|
691 |
-
|
692 |
-
|
693 |
-
class HiT_SRF(nn.Module, PyTorchModelHubMixin):
|
694 |
-
""" HiT-SRF network.
|
695 |
-
|
696 |
-
Args:
|
697 |
-
img_size (int | tuple(int)): Input image size. Default 64
|
698 |
-
patch_size (int | tuple(int)): Patch size. Default: 1
|
699 |
-
in_chans (int): Number of input image channels. Default: 3
|
700 |
-
embed_dim (int): Patch embedding dimension. Default: 96
|
701 |
-
depths (tuple(int)): Depth of each Transformer block.
|
702 |
-
num_heads (tuple(int)): Number of heads for spatial self-correlation in different layers.
|
703 |
-
base_win_size (tuple[int]): The height and width of the base window.
|
704 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
705 |
-
drop_rate (float): Dropout rate. Default: 0
|
706 |
-
value_drop_rate (float): Dropout ratio of value. Default: 0.0
|
707 |
-
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
708 |
-
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
709 |
-
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
710 |
-
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
711 |
-
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
712 |
-
upscale (int): Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
713 |
-
img_range (float): Image range. 1. or 255.
|
714 |
-
upsampler (str): The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
715 |
-
resi_connection (str): The convolutional block before residual connection. '1conv'/'3conv'
|
716 |
-
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
717 |
-
"""
|
718 |
-
|
719 |
-
def __init__(self, img_size=64, patch_size=1, in_chans=3,
|
720 |
-
embed_dim=60, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
|
721 |
-
base_win_size=[8,8], mlp_ratio=2.,
|
722 |
-
drop_rate=0., value_drop_rate=0., drop_path_rate=0.,
|
723 |
-
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
724 |
-
use_checkpoint=False, upscale=4, img_range=1., upsampler='pixelshuffledirect', resi_connection='1conv',
|
725 |
-
hier_win_ratios=[0.5,1,2,4,6,8],
|
726 |
-
**kwargs):
|
727 |
-
super(HiT_SRF, self).__init__()
|
728 |
-
num_in_ch = in_chans
|
729 |
-
num_out_ch = in_chans
|
730 |
-
num_feat = 64
|
731 |
-
self.img_range = img_range
|
732 |
-
if in_chans == 3:
|
733 |
-
rgb_mean = (0.4488, 0.4371, 0.4040)
|
734 |
-
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
735 |
-
else:
|
736 |
-
self.mean = torch.zeros(1, 1, 1, 1)
|
737 |
-
self.upscale = upscale
|
738 |
-
self.upsampler = upsampler
|
739 |
-
self.base_win_size = base_win_size
|
740 |
-
|
741 |
-
#####################################################################################################
|
742 |
-
################################### 1, shallow feature extraction ###################################
|
743 |
-
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
744 |
-
|
745 |
-
#####################################################################################################
|
746 |
-
################################### 2, deep feature extraction ######################################
|
747 |
-
self.num_layers = len(depths)
|
748 |
-
self.embed_dim = embed_dim
|
749 |
-
self.ape = ape
|
750 |
-
self.patch_norm = patch_norm
|
751 |
-
self.num_features = embed_dim
|
752 |
-
self.mlp_ratio = mlp_ratio
|
753 |
-
|
754 |
-
# split image into non-overlapping patches
|
755 |
-
self.patch_embed = PatchEmbed(
|
756 |
-
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
757 |
-
norm_layer=norm_layer if self.patch_norm else None)
|
758 |
-
num_patches = self.patch_embed.num_patches
|
759 |
-
patches_resolution = self.patch_embed.patches_resolution
|
760 |
-
self.patches_resolution = patches_resolution
|
761 |
-
|
762 |
-
# merge non-overlapping patches into image
|
763 |
-
self.patch_unembed = PatchUnEmbed(
|
764 |
-
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
765 |
-
norm_layer=norm_layer if self.patch_norm else None)
|
766 |
-
|
767 |
-
# absolute position embedding
|
768 |
-
if self.ape:
|
769 |
-
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
770 |
-
trunc_normal_(self.absolute_pos_embed, std=.02)
|
771 |
-
|
772 |
-
self.pos_drop = nn.Dropout(p=drop_rate)
|
773 |
-
|
774 |
-
# stochastic depth
|
775 |
-
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
776 |
-
|
777 |
-
# build Residual Hierarchical Transformer blocks (RHTB)
|
778 |
-
self.layers = nn.ModuleList()
|
779 |
-
for i_layer in range(self.num_layers):
|
780 |
-
layer = RHTB(dim=embed_dim,
|
781 |
-
input_resolution=(patches_resolution[0],
|
782 |
-
patches_resolution[1]),
|
783 |
-
depth=depths[i_layer],
|
784 |
-
num_heads=num_heads[i_layer],
|
785 |
-
base_win_size=base_win_size,
|
786 |
-
mlp_ratio=self.mlp_ratio,
|
787 |
-
drop=drop_rate, value_drop=value_drop_rate,
|
788 |
-
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
789 |
-
norm_layer=norm_layer,
|
790 |
-
downsample=None,
|
791 |
-
use_checkpoint=use_checkpoint,
|
792 |
-
img_size=img_size,
|
793 |
-
patch_size=patch_size,
|
794 |
-
resi_connection=resi_connection,
|
795 |
-
hier_win_ratios=hier_win_ratios
|
796 |
-
)
|
797 |
-
self.layers.append(layer)
|
798 |
-
self.norm = norm_layer(self.num_features)
|
799 |
-
|
800 |
-
# build the last conv layer in deep feature extraction
|
801 |
-
if resi_connection == '1conv':
|
802 |
-
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
803 |
-
elif resi_connection == '3conv':
|
804 |
-
# to save parameters and memory
|
805 |
-
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
806 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
807 |
-
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
808 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
809 |
-
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
810 |
-
|
811 |
-
#####################################################################################################
|
812 |
-
################################ 3, high quality image reconstruction ################################
|
813 |
-
if self.upsampler == 'pixelshuffle':
|
814 |
-
# for classical SR
|
815 |
-
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
816 |
-
nn.LeakyReLU(inplace=True))
|
817 |
-
self.upsample = Upsample(upscale, num_feat)
|
818 |
-
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
819 |
-
elif self.upsampler == 'pixelshuffledirect':
|
820 |
-
# for lightweight SR (to save parameters)
|
821 |
-
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
822 |
-
(patches_resolution[0], patches_resolution[1]))
|
823 |
-
elif self.upsampler == 'nearest+conv':
|
824 |
-
# for real-world SR (less artifacts)
|
825 |
-
assert self.upscale == 4, 'only support x4 now.'
|
826 |
-
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
827 |
-
nn.LeakyReLU(inplace=True))
|
828 |
-
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
829 |
-
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
830 |
-
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
831 |
-
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
832 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
833 |
-
else:
|
834 |
-
# for image denoising and JPEG compression artifact reduction
|
835 |
-
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
836 |
-
|
837 |
-
self.apply(self._init_weights)
|
838 |
-
|
839 |
-
def _init_weights(self, m):
|
840 |
-
if isinstance(m, nn.Linear):
|
841 |
-
trunc_normal_(m.weight, std=.02)
|
842 |
-
if isinstance(m, nn.Linear) and m.bias is not None:
|
843 |
-
nn.init.constant_(m.bias, 0)
|
844 |
-
elif isinstance(m, nn.LayerNorm):
|
845 |
-
nn.init.constant_(m.bias, 0)
|
846 |
-
nn.init.constant_(m.weight, 1.0)
|
847 |
-
|
848 |
-
@torch.jit.ignore
|
849 |
-
def no_weight_decay(self):
|
850 |
-
return {'absolute_pos_embed'}
|
851 |
-
|
852 |
-
@torch.jit.ignore
|
853 |
-
def no_weight_decay_keywords(self):
|
854 |
-
return {'relative_position_bias_table'}
|
855 |
-
|
856 |
-
|
857 |
-
def forward_features(self, x):
|
858 |
-
x_size = (x.shape[2], x.shape[3])
|
859 |
-
x = self.patch_embed(x)
|
860 |
-
if self.ape:
|
861 |
-
x = x + self.absolute_pos_embed
|
862 |
-
x = self.pos_drop(x)
|
863 |
-
|
864 |
-
for layer in self.layers:
|
865 |
-
x = layer(x, x_size)
|
866 |
-
|
867 |
-
x = self.norm(x) # B L C
|
868 |
-
x = self.patch_unembed(x, x_size)
|
869 |
-
|
870 |
-
return x
|
871 |
-
|
872 |
-
def infer_image(self, image_path,
|
873 |
-
|
874 |
-
io_backend_opt = {'type':'disk'}
|
875 |
-
self.file_client = FileClient(io_backend_opt.pop('type'), **io_backend_opt)
|
876 |
-
|
877 |
-
# load lq image
|
878 |
-
lq_path = image_path
|
879 |
-
img_bytes = self.file_client.get(lq_path, 'lq')
|
880 |
-
img_lq = imfrombytes(img_bytes, float32=True)
|
881 |
-
|
882 |
-
# BGR to RGB, HWC to CHW, numpy to tensor
|
883 |
-
x = img2tensor(img_lq, bgr2rgb=True, float32=True)[None,...]
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
x = self.
|
906 |
-
x = self.
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
x = self.
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
x = self.
|
917 |
-
x = self.
|
918 |
-
x = self.
|
919 |
-
x = self.
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.utils.checkpoint as checkpoint
|
6 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from huggingface_hub import PyTorchModelHubMixin
|
10 |
+
from utils import FileClient, imfrombytes, img2tensor, tensor2img
|
11 |
+
|
12 |
+
class DFE(nn.Module):
|
13 |
+
""" Dual Feature Extraction
|
14 |
+
Args:
|
15 |
+
in_features (int): Number of input channels.
|
16 |
+
out_features (int): Number of output channels.
|
17 |
+
"""
|
18 |
+
def __init__(self, in_features, out_features):
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
self.out_features = out_features
|
22 |
+
|
23 |
+
self.conv = nn.Sequential(nn.Conv2d(in_features, in_features // 5, 1, 1, 0),
|
24 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
25 |
+
nn.Conv2d(in_features // 5, in_features // 5, 3, 1, 1),
|
26 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
27 |
+
nn.Conv2d(in_features // 5, out_features, 1, 1, 0))
|
28 |
+
|
29 |
+
self.linear = nn.Conv2d(in_features, out_features,1,1,0)
|
30 |
+
|
31 |
+
def forward(self, x, x_size):
|
32 |
+
|
33 |
+
B, L, C = x.shape
|
34 |
+
H, W = x_size
|
35 |
+
x = x.permute(0, 2, 1).contiguous().view(B, C, H, W)
|
36 |
+
x = self.conv(x) * self.linear(x)
|
37 |
+
x = x.view(B, -1, H*W).permute(0,2,1).contiguous()
|
38 |
+
|
39 |
+
return x
|
40 |
+
|
41 |
+
class Mlp(nn.Module):
|
42 |
+
""" MLP-based Feed-Forward Network
|
43 |
+
Args:
|
44 |
+
in_features (int): Number of input channels.
|
45 |
+
hidden_features (int | None): Number of hidden channels. Default: None
|
46 |
+
out_features (int | None): Number of output channels. Default: None
|
47 |
+
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
48 |
+
drop (float): Dropout rate. Default: 0.0
|
49 |
+
"""
|
50 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
51 |
+
super().__init__()
|
52 |
+
out_features = out_features or in_features
|
53 |
+
hidden_features = hidden_features or in_features
|
54 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
55 |
+
self.act = act_layer()
|
56 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
57 |
+
self.drop = nn.Dropout(drop)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
x = self.fc1(x)
|
61 |
+
x = self.act(x)
|
62 |
+
x = self.drop(x)
|
63 |
+
x = self.fc2(x)
|
64 |
+
x = self.drop(x)
|
65 |
+
return x
|
66 |
+
|
67 |
+
|
68 |
+
class dwconv(nn.Module):
|
69 |
+
def __init__(self,hidden_features):
|
70 |
+
super(dwconv, self).__init__()
|
71 |
+
self.depthwise_conv = nn.Sequential(
|
72 |
+
nn.Conv2d(hidden_features, hidden_features, kernel_size=5, stride=1, padding=2, dilation=1,
|
73 |
+
groups=hidden_features), nn.GELU())
|
74 |
+
self.hidden_features = hidden_features
|
75 |
+
def forward(self,x,x_size):
|
76 |
+
x = x.transpose(1, 2).view(x.shape[0], self.hidden_features, x_size[0], x_size[1]).contiguous() # b Ph*Pw c
|
77 |
+
x = self.depthwise_conv(x)
|
78 |
+
x = x.flatten(2).transpose(1, 2).contiguous()
|
79 |
+
return x
|
80 |
+
|
81 |
+
class ConvFFN(nn.Module):
|
82 |
+
|
83 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
84 |
+
super().__init__()
|
85 |
+
out_features = out_features or in_features
|
86 |
+
hidden_features = hidden_features or in_features
|
87 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
88 |
+
self.act = act_layer()
|
89 |
+
self.dwconv = dwconv(hidden_features=hidden_features)
|
90 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
91 |
+
self.drop = nn.Dropout(drop)
|
92 |
+
|
93 |
+
|
94 |
+
def forward(self, x,x_size):
|
95 |
+
x = self.fc1(x)
|
96 |
+
x = self.act(x)
|
97 |
+
x = x + self.dwconv(x,x_size)
|
98 |
+
x = self.drop(x)
|
99 |
+
x = self.fc2(x)
|
100 |
+
x = self.drop(x)
|
101 |
+
return x
|
102 |
+
|
103 |
+
def window_partition(x, window_size):
|
104 |
+
"""
|
105 |
+
Args:
|
106 |
+
x: (B, H, W, C)
|
107 |
+
window_size (tuple): window size
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
windows: (num_windows*B, window_size, window_size, C)
|
111 |
+
"""
|
112 |
+
B, H, W, C = x.shape
|
113 |
+
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
114 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
115 |
+
return windows
|
116 |
+
|
117 |
+
|
118 |
+
def window_reverse(windows, window_size, H, W):
|
119 |
+
"""
|
120 |
+
Args:
|
121 |
+
windows: (num_windows*B, window_size, window_size, C)
|
122 |
+
window_size (tuple): Window size
|
123 |
+
H (int): Height of image
|
124 |
+
W (int): Width of image
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
x: (B, H, W, C)
|
128 |
+
"""
|
129 |
+
B = int(windows.shape[0] * (window_size[0] * window_size[1]) / (H * W))
|
130 |
+
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
|
131 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
132 |
+
return x
|
133 |
+
|
134 |
+
class DynamicPosBias(nn.Module):
|
135 |
+
# The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
|
136 |
+
""" Dynamic Relative Position Bias.
|
137 |
+
Args:
|
138 |
+
dim (int): Number of input channels.
|
139 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
140 |
+
residual (bool): If True, use residual strage to connect conv.
|
141 |
+
"""
|
142 |
+
def __init__(self, dim, num_heads, residual):
|
143 |
+
super().__init__()
|
144 |
+
self.residual = residual
|
145 |
+
self.num_heads = num_heads
|
146 |
+
self.pos_dim = dim // 4
|
147 |
+
self.pos_proj = nn.Linear(2, self.pos_dim)
|
148 |
+
self.pos1 = nn.Sequential(
|
149 |
+
nn.LayerNorm(self.pos_dim),
|
150 |
+
nn.ReLU(inplace=True),
|
151 |
+
nn.Linear(self.pos_dim, self.pos_dim),
|
152 |
+
)
|
153 |
+
self.pos2 = nn.Sequential(
|
154 |
+
nn.LayerNorm(self.pos_dim),
|
155 |
+
nn.ReLU(inplace=True),
|
156 |
+
nn.Linear(self.pos_dim, self.pos_dim)
|
157 |
+
)
|
158 |
+
self.pos3 = nn.Sequential(
|
159 |
+
nn.LayerNorm(self.pos_dim),
|
160 |
+
nn.ReLU(inplace=True),
|
161 |
+
nn.Linear(self.pos_dim, self.num_heads)
|
162 |
+
)
|
163 |
+
def forward(self, biases):
|
164 |
+
if self.residual:
|
165 |
+
pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
|
166 |
+
pos = pos + self.pos1(pos)
|
167 |
+
pos = pos + self.pos2(pos)
|
168 |
+
pos = self.pos3(pos)
|
169 |
+
else:
|
170 |
+
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
|
171 |
+
return pos
|
172 |
+
|
173 |
+
class SCC(nn.Module):
|
174 |
+
""" Spatial-Channel Correlation.
|
175 |
+
Args:
|
176 |
+
dim (int): Number of input channels.
|
177 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
178 |
+
window_size (tuple[int]): The height and width of the window.
|
179 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
180 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
181 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
182 |
+
"""
|
183 |
+
|
184 |
+
def __init__(self, dim, base_win_size, window_size, num_heads, value_drop=0., proj_drop=0.):
|
185 |
+
|
186 |
+
super().__init__()
|
187 |
+
# parameters
|
188 |
+
self.dim = dim
|
189 |
+
self.window_size = window_size
|
190 |
+
self.num_heads = num_heads
|
191 |
+
|
192 |
+
# feature projection
|
193 |
+
self.qv = DFE(dim, dim)
|
194 |
+
self.proj = nn.Linear(dim, dim)
|
195 |
+
|
196 |
+
# dropout
|
197 |
+
self.value_drop = nn.Dropout(value_drop)
|
198 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
199 |
+
|
200 |
+
# base window size
|
201 |
+
min_h = min(self.window_size[0], base_win_size[0])
|
202 |
+
min_w = min(self.window_size[1], base_win_size[1])
|
203 |
+
self.base_win_size = (min_h, min_w)
|
204 |
+
|
205 |
+
# normalization factor and spatial linear layer for S-SC
|
206 |
+
head_dim = dim // (2*num_heads)
|
207 |
+
self.scale = head_dim
|
208 |
+
self.spatial_linear = nn.Linear(self.window_size[0]*self.window_size[1] // (self.base_win_size[0]*self.base_win_size[1]), 1)
|
209 |
+
|
210 |
+
# define a parameter table of relative position bias
|
211 |
+
self.H_sp, self.W_sp = self.window_size
|
212 |
+
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
|
213 |
+
|
214 |
+
def spatial_linear_projection(self, x):
|
215 |
+
B, num_h, L, C = x.shape
|
216 |
+
H, W = self.window_size
|
217 |
+
map_H, map_W = self.base_win_size
|
218 |
+
|
219 |
+
x = x.view(B, num_h, map_H, H//map_H, map_W, W//map_W, C).permute(0,1,2,4,6,3,5).contiguous().view(B, num_h, map_H*map_W, C, -1)
|
220 |
+
x = self.spatial_linear(x).view(B, num_h, map_H*map_W, C)
|
221 |
+
return x
|
222 |
+
|
223 |
+
def spatial_self_correlation(self, q, v):
|
224 |
+
|
225 |
+
B, num_head, L, C = q.shape
|
226 |
+
|
227 |
+
# spatial projection
|
228 |
+
v = self.spatial_linear_projection(v)
|
229 |
+
|
230 |
+
# compute correlation map
|
231 |
+
corr_map = (q @ v.transpose(-2,-1)) / self.scale
|
232 |
+
|
233 |
+
# add relative position bias
|
234 |
+
# generate mother-set
|
235 |
+
position_bias_h = torch.arange(1 - self.H_sp, self.H_sp, device=v.device)
|
236 |
+
position_bias_w = torch.arange(1 - self.W_sp, self.W_sp, device=v.device)
|
237 |
+
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
|
238 |
+
rpe_biases = biases.flatten(1).transpose(0, 1).contiguous().float()
|
239 |
+
pos = self.pos(rpe_biases)
|
240 |
+
|
241 |
+
# select position bias
|
242 |
+
coords_h = torch.arange(self.H_sp, device=v.device)
|
243 |
+
coords_w = torch.arange(self.W_sp, device=v.device)
|
244 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
245 |
+
coords_flatten = torch.flatten(coords, 1)
|
246 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
247 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
248 |
+
relative_coords[:, :, 0] += self.H_sp - 1
|
249 |
+
relative_coords[:, :, 1] += self.W_sp - 1
|
250 |
+
relative_coords[:, :, 0] *= 2 * self.W_sp - 1
|
251 |
+
relative_position_index = relative_coords.sum(-1)
|
252 |
+
relative_position_bias = pos[relative_position_index.view(-1)].view(
|
253 |
+
self.window_size[0] * self.window_size[1], self.base_win_size[0], self.window_size[0]//self.base_win_size[0], self.base_win_size[1], self.window_size[1]//self.base_win_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
254 |
+
relative_position_bias = relative_position_bias.permute(0,1,3,5,2,4).contiguous().view(
|
255 |
+
self.window_size[0] * self.window_size[1], self.base_win_size[0]*self.base_win_size[1], self.num_heads, -1).mean(-1)
|
256 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
257 |
+
corr_map = corr_map + relative_position_bias.unsqueeze(0)
|
258 |
+
|
259 |
+
# transformation
|
260 |
+
v_drop = self.value_drop(v)
|
261 |
+
x = (corr_map @ v_drop).permute(0,2,1,3).contiguous().view(B, L, -1)
|
262 |
+
|
263 |
+
return x
|
264 |
+
|
265 |
+
def channel_self_correlation(self, q, v):
|
266 |
+
|
267 |
+
B, num_head, L, C = q.shape
|
268 |
+
|
269 |
+
# apply single head strategy
|
270 |
+
q = q.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
|
271 |
+
v = v.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
|
272 |
+
|
273 |
+
# compute correlation map
|
274 |
+
corr_map = (q.transpose(-2,-1) @ v) / L
|
275 |
+
|
276 |
+
# transformation
|
277 |
+
v_drop = self.value_drop(v)
|
278 |
+
x = (corr_map @ v_drop.transpose(-2,-1)).permute(0,2,1).contiguous().view(B, L, -1)
|
279 |
+
|
280 |
+
return x
|
281 |
+
|
282 |
+
def forward(self, x):
|
283 |
+
"""
|
284 |
+
Args:
|
285 |
+
x: input features with shape of (B, H, W, C)
|
286 |
+
"""
|
287 |
+
xB,xH,xW,xC = x.shape
|
288 |
+
qv = self.qv(x.view(xB,-1,xC), (xH,xW)).view(xB, xH, xW, xC)
|
289 |
+
|
290 |
+
# window partition
|
291 |
+
qv = window_partition(qv, self.window_size)
|
292 |
+
qv = qv.view(-1, self.window_size[0]*self.window_size[1], xC)
|
293 |
+
|
294 |
+
# qv splitting
|
295 |
+
B, L, C = qv.shape
|
296 |
+
qv = qv.view(B, L, 2, self.num_heads, C // (2*self.num_heads)).permute(2,0,3,1,4).contiguous()
|
297 |
+
q, v = qv[0], qv[1] # B, num_heads, L, C//num_heads
|
298 |
+
|
299 |
+
# spatial self-correlation (S-SC)
|
300 |
+
x_spatial = self.spatial_self_correlation(q, v)
|
301 |
+
x_spatial = x_spatial.view(-1, self.window_size[0], self.window_size[1], C//2)
|
302 |
+
x_spatial = window_reverse(x_spatial, (self.window_size[0],self.window_size[1]), xH, xW) # xB xH xW xC
|
303 |
+
|
304 |
+
# channel self-correlation (C-SC)
|
305 |
+
x_channel = self.channel_self_correlation(q, v)
|
306 |
+
x_channel = x_channel.view(-1, self.window_size[0], self.window_size[1], C//2)
|
307 |
+
x_channel = window_reverse(x_channel, (self.window_size[0], self.window_size[1]), xH, xW) # xB xH xW xC
|
308 |
+
|
309 |
+
# spatial-channel information fusion
|
310 |
+
x = torch.cat([x_spatial, x_channel], -1)
|
311 |
+
x = self.proj_drop(self.proj(x))
|
312 |
+
|
313 |
+
return x
|
314 |
+
|
315 |
+
def extra_repr(self) -> str:
|
316 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
317 |
+
|
318 |
+
|
319 |
+
class HierarchicalTransformerBlock(nn.Module):
|
320 |
+
""" Hierarchical Transformer Block.
|
321 |
+
Args:
|
322 |
+
dim (int): Number of input channels.
|
323 |
+
input_resolution (tuple[int]): Input resulotion.
|
324 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
325 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
326 |
+
window_size (tuple[int]): The height and width of the window.
|
327 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
328 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
329 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
330 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
331 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
332 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
333 |
+
"""
|
334 |
+
|
335 |
+
def __init__(self, dim, input_resolution, num_heads, base_win_size, window_size,
|
336 |
+
mlp_ratio=4., drop=0., value_drop=0., drop_path=0.,
|
337 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
338 |
+
super().__init__()
|
339 |
+
self.dim = dim
|
340 |
+
self.input_resolution = input_resolution
|
341 |
+
self.num_heads = num_heads
|
342 |
+
self.window_size = window_size
|
343 |
+
self.mlp_ratio = mlp_ratio
|
344 |
+
|
345 |
+
# check window size
|
346 |
+
if (window_size[0] > base_win_size[0]) and (window_size[1] > base_win_size[1]):
|
347 |
+
assert window_size[0] % base_win_size[0] == 0, "please ensure the window size is smaller than or divisible by the base window size"
|
348 |
+
assert window_size[1] % base_win_size[1] == 0, "please ensure the window size is smaller than or divisible by the base window size"
|
349 |
+
|
350 |
+
|
351 |
+
self.norm1 = norm_layer(dim)
|
352 |
+
self.correlation = SCC(
|
353 |
+
dim, base_win_size=base_win_size, window_size=self.window_size, num_heads=num_heads,
|
354 |
+
value_drop=value_drop, proj_drop=drop)
|
355 |
+
|
356 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
357 |
+
self.norm2 = norm_layer(dim)
|
358 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
359 |
+
self.mlp = ConvFFN(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
360 |
+
# self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
361 |
+
|
362 |
+
def check_image_size(self, x, win_size):
|
363 |
+
x = x.permute(0,3,1,2).contiguous()
|
364 |
+
_, _, h, w = x.size()
|
365 |
+
mod_pad_h = (win_size[0] - h % win_size[0]) % win_size[0]
|
366 |
+
mod_pad_w = (win_size[1] - w % win_size[1]) % win_size[1]
|
367 |
+
|
368 |
+
if mod_pad_h >= h or mod_pad_w >= w:
|
369 |
+
pad_h, pad_w = h-1, w-1
|
370 |
+
x = F.pad(x, (0, pad_w, 0, pad_h), 'reflect')
|
371 |
+
else:
|
372 |
+
pad_h, pad_w = 0, 0
|
373 |
+
|
374 |
+
mod_pad_h = mod_pad_h - pad_h
|
375 |
+
mod_pad_w = mod_pad_w - pad_w
|
376 |
+
|
377 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
378 |
+
x = x.permute(0,2,3,1).contiguous()
|
379 |
+
return x
|
380 |
+
|
381 |
+
def forward(self, x, x_size, win_size):
|
382 |
+
H, W = x_size
|
383 |
+
B, L, C = x.shape
|
384 |
+
|
385 |
+
shortcut = x
|
386 |
+
x = x.view(B, H, W, C)
|
387 |
+
|
388 |
+
# padding
|
389 |
+
x = self.check_image_size(x, win_size)
|
390 |
+
_, H_pad, W_pad, _ = x.shape # shape after padding
|
391 |
+
|
392 |
+
x = self.correlation(x)
|
393 |
+
|
394 |
+
# unpad
|
395 |
+
x = x[:, :H, :W, :].contiguous()
|
396 |
+
|
397 |
+
# norm
|
398 |
+
x = x.view(B, H * W, C)
|
399 |
+
x = self.norm1(x)
|
400 |
+
|
401 |
+
# FFN
|
402 |
+
x = shortcut + self.drop_path(x)
|
403 |
+
x = x + self.drop_path(self.norm2(self.mlp(x, x_size)))
|
404 |
+
|
405 |
+
return x
|
406 |
+
|
407 |
+
def extra_repr(self) -> str:
|
408 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
409 |
+
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
|
410 |
+
|
411 |
+
|
412 |
+
class PatchMerging(nn.Module):
|
413 |
+
""" Patch Merging Layer.
|
414 |
+
Args:
|
415 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
416 |
+
dim (int): Number of input channels.
|
417 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
418 |
+
"""
|
419 |
+
|
420 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
421 |
+
super().__init__()
|
422 |
+
self.input_resolution = input_resolution
|
423 |
+
self.dim = dim
|
424 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
425 |
+
self.norm = norm_layer(4 * dim)
|
426 |
+
|
427 |
+
def forward(self, x):
|
428 |
+
"""
|
429 |
+
x: B, H*W, C
|
430 |
+
"""
|
431 |
+
H, W = self.input_resolution
|
432 |
+
B, L, C = x.shape
|
433 |
+
assert L == H * W, "input feature has wrong size"
|
434 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
435 |
+
|
436 |
+
x = x.view(B, H, W, C)
|
437 |
+
|
438 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
439 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
440 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
441 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
442 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
443 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
444 |
+
|
445 |
+
x = self.norm(x)
|
446 |
+
x = self.reduction(x)
|
447 |
+
|
448 |
+
return x
|
449 |
+
|
450 |
+
def extra_repr(self) -> str:
|
451 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
452 |
+
|
453 |
+
|
454 |
+
class BasicLayer(nn.Module):
|
455 |
+
""" A basic Hierarchical Transformer layer for one stage.
|
456 |
+
|
457 |
+
Args:
|
458 |
+
dim (int): Number of input channels.
|
459 |
+
input_resolution (tuple[int]): Input resolution.
|
460 |
+
depth (int): Number of blocks.
|
461 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
462 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
463 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
464 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
465 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
466 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
467 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
468 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
469 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
470 |
+
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
471 |
+
"""
|
472 |
+
|
473 |
+
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,
|
474 |
+
mlp_ratio=4., drop=0., value_drop=0.,drop_path=0., norm_layer=nn.LayerNorm,
|
475 |
+
downsample=None, use_checkpoint=False, hier_win_ratios=[0.5,1,2,4,6,8]):
|
476 |
+
|
477 |
+
super().__init__()
|
478 |
+
self.dim = dim
|
479 |
+
self.input_resolution = input_resolution
|
480 |
+
self.depth = depth
|
481 |
+
self.use_checkpoint = use_checkpoint
|
482 |
+
|
483 |
+
self.win_hs = [int(base_win_size[0] * ratio) for ratio in hier_win_ratios]
|
484 |
+
self.win_ws = [int(base_win_size[1] * ratio) for ratio in hier_win_ratios]
|
485 |
+
|
486 |
+
# build blocks
|
487 |
+
self.blocks = nn.ModuleList([
|
488 |
+
HierarchicalTransformerBlock(dim=dim, input_resolution=input_resolution,
|
489 |
+
num_heads=num_heads,
|
490 |
+
base_win_size=base_win_size,
|
491 |
+
window_size=(self.win_hs[i], self.win_ws[i]),
|
492 |
+
mlp_ratio=mlp_ratio,
|
493 |
+
drop=drop, value_drop=value_drop,
|
494 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
495 |
+
norm_layer=norm_layer)
|
496 |
+
for i in range(depth)])
|
497 |
+
|
498 |
+
# patch merging layer
|
499 |
+
if downsample is not None:
|
500 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
501 |
+
else:
|
502 |
+
self.downsample = None
|
503 |
+
|
504 |
+
def forward(self, x, x_size):
|
505 |
+
|
506 |
+
i = 0
|
507 |
+
for blk in self.blocks:
|
508 |
+
if self.use_checkpoint:
|
509 |
+
x = checkpoint.checkpoint(blk, x, x_size, (self.win_hs[i], self.win_ws[i]))
|
510 |
+
else:
|
511 |
+
x = blk(x, x_size, (self.win_hs[i], self.win_ws[i]))
|
512 |
+
i = i + 1
|
513 |
+
|
514 |
+
if self.downsample is not None:
|
515 |
+
x = self.downsample(x)
|
516 |
+
return x
|
517 |
+
|
518 |
+
def extra_repr(self) -> str:
|
519 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
520 |
+
|
521 |
+
|
522 |
+
class RHTB(nn.Module):
|
523 |
+
"""Residual Hierarchical Transformer Block (RHTB).
|
524 |
+
Args:
|
525 |
+
dim (int): Number of input channels.
|
526 |
+
input_resolution (tuple[int]): Input resolution.
|
527 |
+
depth (int): Number of blocks.
|
528 |
+
num_heads (int): Number of heads for spatial self-correlation.
|
529 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
530 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
531 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
532 |
+
value_drop (float, optional): Dropout ratio of value. Default: 0.0
|
533 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
534 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
535 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
536 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
537 |
+
img_size: Input image size.
|
538 |
+
patch_size: Patch size.
|
539 |
+
resi_connection: The convolutional block before residual connection.
|
540 |
+
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
541 |
+
"""
|
542 |
+
|
543 |
+
def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,
|
544 |
+
mlp_ratio=4., drop=0., value_drop=0., drop_path=0., norm_layer=nn.LayerNorm,
|
545 |
+
downsample=None, use_checkpoint=False, img_size=224, patch_size=4,
|
546 |
+
resi_connection='1conv', hier_win_ratios=[0.5,1,2,4,6,8]):
|
547 |
+
super(RHTB, self).__init__()
|
548 |
+
|
549 |
+
self.dim = dim
|
550 |
+
self.input_resolution = input_resolution
|
551 |
+
|
552 |
+
self.residual_group = BasicLayer(dim=dim,
|
553 |
+
input_resolution=input_resolution,
|
554 |
+
depth=depth,
|
555 |
+
num_heads=num_heads,
|
556 |
+
base_win_size=base_win_size,
|
557 |
+
mlp_ratio=mlp_ratio,
|
558 |
+
drop=drop, value_drop=value_drop,
|
559 |
+
drop_path=drop_path,
|
560 |
+
norm_layer=norm_layer,
|
561 |
+
downsample=downsample,
|
562 |
+
use_checkpoint=use_checkpoint,
|
563 |
+
hier_win_ratios=hier_win_ratios)
|
564 |
+
|
565 |
+
if resi_connection == '1conv':
|
566 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
567 |
+
elif resi_connection == '3conv':
|
568 |
+
# to save parameters and memory
|
569 |
+
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
570 |
+
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
|
571 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
572 |
+
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
573 |
+
|
574 |
+
self.patch_embed = PatchEmbed(
|
575 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
576 |
+
norm_layer=None)
|
577 |
+
|
578 |
+
self.patch_unembed = PatchUnEmbed(
|
579 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
580 |
+
norm_layer=None)
|
581 |
+
|
582 |
+
def forward(self, x, x_size):
|
583 |
+
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
|
584 |
+
|
585 |
+
|
586 |
+
class PatchEmbed(nn.Module):
|
587 |
+
r""" Image to Patch Embedding
|
588 |
+
|
589 |
+
Args:
|
590 |
+
img_size (int): Image size. Default: 224.
|
591 |
+
patch_size (int): Patch token size. Default: 4.
|
592 |
+
in_chans (int): Number of input image channels. Default: 3.
|
593 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
594 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
595 |
+
"""
|
596 |
+
|
597 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
598 |
+
super().__init__()
|
599 |
+
img_size = to_2tuple(img_size)
|
600 |
+
patch_size = to_2tuple(patch_size)
|
601 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
602 |
+
self.img_size = img_size
|
603 |
+
self.patch_size = patch_size
|
604 |
+
self.patches_resolution = patches_resolution
|
605 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
606 |
+
|
607 |
+
self.in_chans = in_chans
|
608 |
+
self.embed_dim = embed_dim
|
609 |
+
|
610 |
+
if norm_layer is not None:
|
611 |
+
self.norm = norm_layer(embed_dim)
|
612 |
+
else:
|
613 |
+
self.norm = None
|
614 |
+
|
615 |
+
def forward(self, x):
|
616 |
+
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
|
617 |
+
if self.norm is not None:
|
618 |
+
x = self.norm(x)
|
619 |
+
return x
|
620 |
+
|
621 |
+
|
622 |
+
class PatchUnEmbed(nn.Module):
|
623 |
+
r""" Image to Patch Unembedding
|
624 |
+
|
625 |
+
Args:
|
626 |
+
img_size (int): Image size. Default: 224.
|
627 |
+
patch_size (int): Patch token size. Default: 4.
|
628 |
+
in_chans (int): Number of input image channels. Default: 3.
|
629 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
630 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
631 |
+
"""
|
632 |
+
|
633 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
634 |
+
super().__init__()
|
635 |
+
img_size = to_2tuple(img_size)
|
636 |
+
patch_size = to_2tuple(patch_size)
|
637 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
638 |
+
self.img_size = img_size
|
639 |
+
self.patch_size = patch_size
|
640 |
+
self.patches_resolution = patches_resolution
|
641 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
642 |
+
|
643 |
+
self.in_chans = in_chans
|
644 |
+
self.embed_dim = embed_dim
|
645 |
+
|
646 |
+
def forward(self, x, x_size):
|
647 |
+
B, HW, C = x.shape
|
648 |
+
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
|
649 |
+
return x
|
650 |
+
|
651 |
+
|
652 |
+
class Upsample(nn.Sequential):
|
653 |
+
"""Upsample module.
|
654 |
+
|
655 |
+
Args:
|
656 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
657 |
+
num_feat (int): Channel number of intermediate features.
|
658 |
+
"""
|
659 |
+
|
660 |
+
def __init__(self, scale, num_feat):
|
661 |
+
m = []
|
662 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
663 |
+
for _ in range(int(math.log(scale, 2))):
|
664 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
665 |
+
m.append(nn.PixelShuffle(2))
|
666 |
+
elif scale == 3:
|
667 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
668 |
+
m.append(nn.PixelShuffle(3))
|
669 |
+
else:
|
670 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
671 |
+
super(Upsample, self).__init__(*m)
|
672 |
+
|
673 |
+
|
674 |
+
class UpsampleOneStep(nn.Sequential):
|
675 |
+
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
676 |
+
Used in lightweight SR to save parameters.
|
677 |
+
|
678 |
+
Args:
|
679 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
680 |
+
num_feat (int): Channel number of intermediate features.
|
681 |
+
|
682 |
+
"""
|
683 |
+
|
684 |
+
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
685 |
+
self.num_feat = num_feat
|
686 |
+
self.input_resolution = input_resolution
|
687 |
+
m = []
|
688 |
+
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
|
689 |
+
m.append(nn.PixelShuffle(scale))
|
690 |
+
super(UpsampleOneStep, self).__init__(*m)
|
691 |
+
|
692 |
+
|
693 |
+
class HiT_SRF(nn.Module, PyTorchModelHubMixin):
|
694 |
+
""" HiT-SRF network.
|
695 |
+
|
696 |
+
Args:
|
697 |
+
img_size (int | tuple(int)): Input image size. Default 64
|
698 |
+
patch_size (int | tuple(int)): Patch size. Default: 1
|
699 |
+
in_chans (int): Number of input image channels. Default: 3
|
700 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
701 |
+
depths (tuple(int)): Depth of each Transformer block.
|
702 |
+
num_heads (tuple(int)): Number of heads for spatial self-correlation in different layers.
|
703 |
+
base_win_size (tuple[int]): The height and width of the base window.
|
704 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
705 |
+
drop_rate (float): Dropout rate. Default: 0
|
706 |
+
value_drop_rate (float): Dropout ratio of value. Default: 0.0
|
707 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
708 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
709 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
710 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
711 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
712 |
+
upscale (int): Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
713 |
+
img_range (float): Image range. 1. or 255.
|
714 |
+
upsampler (str): The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
715 |
+
resi_connection (str): The convolutional block before residual connection. '1conv'/'3conv'
|
716 |
+
hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].
|
717 |
+
"""
|
718 |
+
|
719 |
+
def __init__(self, img_size=64, patch_size=1, in_chans=3,
|
720 |
+
embed_dim=60, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
|
721 |
+
base_win_size=[8,8], mlp_ratio=2.,
|
722 |
+
drop_rate=0., value_drop_rate=0., drop_path_rate=0.,
|
723 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
724 |
+
use_checkpoint=False, upscale=4, img_range=1., upsampler='pixelshuffledirect', resi_connection='1conv',
|
725 |
+
hier_win_ratios=[0.5,1,2,4,6,8],
|
726 |
+
**kwargs):
|
727 |
+
super(HiT_SRF, self).__init__()
|
728 |
+
num_in_ch = in_chans
|
729 |
+
num_out_ch = in_chans
|
730 |
+
num_feat = 64
|
731 |
+
self.img_range = img_range
|
732 |
+
if in_chans == 3:
|
733 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
734 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
735 |
+
else:
|
736 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
737 |
+
self.upscale = upscale
|
738 |
+
self.upsampler = upsampler
|
739 |
+
self.base_win_size = base_win_size
|
740 |
+
|
741 |
+
#####################################################################################################
|
742 |
+
################################### 1, shallow feature extraction ###################################
|
743 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
744 |
+
|
745 |
+
#####################################################################################################
|
746 |
+
################################### 2, deep feature extraction ######################################
|
747 |
+
self.num_layers = len(depths)
|
748 |
+
self.embed_dim = embed_dim
|
749 |
+
self.ape = ape
|
750 |
+
self.patch_norm = patch_norm
|
751 |
+
self.num_features = embed_dim
|
752 |
+
self.mlp_ratio = mlp_ratio
|
753 |
+
|
754 |
+
# split image into non-overlapping patches
|
755 |
+
self.patch_embed = PatchEmbed(
|
756 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
757 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
758 |
+
num_patches = self.patch_embed.num_patches
|
759 |
+
patches_resolution = self.patch_embed.patches_resolution
|
760 |
+
self.patches_resolution = patches_resolution
|
761 |
+
|
762 |
+
# merge non-overlapping patches into image
|
763 |
+
self.patch_unembed = PatchUnEmbed(
|
764 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
765 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
766 |
+
|
767 |
+
# absolute position embedding
|
768 |
+
if self.ape:
|
769 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
770 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
771 |
+
|
772 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
773 |
+
|
774 |
+
# stochastic depth
|
775 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
776 |
+
|
777 |
+
# build Residual Hierarchical Transformer blocks (RHTB)
|
778 |
+
self.layers = nn.ModuleList()
|
779 |
+
for i_layer in range(self.num_layers):
|
780 |
+
layer = RHTB(dim=embed_dim,
|
781 |
+
input_resolution=(patches_resolution[0],
|
782 |
+
patches_resolution[1]),
|
783 |
+
depth=depths[i_layer],
|
784 |
+
num_heads=num_heads[i_layer],
|
785 |
+
base_win_size=base_win_size,
|
786 |
+
mlp_ratio=self.mlp_ratio,
|
787 |
+
drop=drop_rate, value_drop=value_drop_rate,
|
788 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
789 |
+
norm_layer=norm_layer,
|
790 |
+
downsample=None,
|
791 |
+
use_checkpoint=use_checkpoint,
|
792 |
+
img_size=img_size,
|
793 |
+
patch_size=patch_size,
|
794 |
+
resi_connection=resi_connection,
|
795 |
+
hier_win_ratios=hier_win_ratios
|
796 |
+
)
|
797 |
+
self.layers.append(layer)
|
798 |
+
self.norm = norm_layer(self.num_features)
|
799 |
+
|
800 |
+
# build the last conv layer in deep feature extraction
|
801 |
+
if resi_connection == '1conv':
|
802 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
803 |
+
elif resi_connection == '3conv':
|
804 |
+
# to save parameters and memory
|
805 |
+
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
806 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
807 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
808 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
809 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
810 |
+
|
811 |
+
#####################################################################################################
|
812 |
+
################################ 3, high quality image reconstruction ################################
|
813 |
+
if self.upsampler == 'pixelshuffle':
|
814 |
+
# for classical SR
|
815 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
816 |
+
nn.LeakyReLU(inplace=True))
|
817 |
+
self.upsample = Upsample(upscale, num_feat)
|
818 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
819 |
+
elif self.upsampler == 'pixelshuffledirect':
|
820 |
+
# for lightweight SR (to save parameters)
|
821 |
+
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
822 |
+
(patches_resolution[0], patches_resolution[1]))
|
823 |
+
elif self.upsampler == 'nearest+conv':
|
824 |
+
# for real-world SR (less artifacts)
|
825 |
+
assert self.upscale == 4, 'only support x4 now.'
|
826 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
827 |
+
nn.LeakyReLU(inplace=True))
|
828 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
829 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
830 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
831 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
832 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
833 |
+
else:
|
834 |
+
# for image denoising and JPEG compression artifact reduction
|
835 |
+
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
836 |
+
|
837 |
+
self.apply(self._init_weights)
|
838 |
+
|
839 |
+
def _init_weights(self, m):
|
840 |
+
if isinstance(m, nn.Linear):
|
841 |
+
trunc_normal_(m.weight, std=.02)
|
842 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
843 |
+
nn.init.constant_(m.bias, 0)
|
844 |
+
elif isinstance(m, nn.LayerNorm):
|
845 |
+
nn.init.constant_(m.bias, 0)
|
846 |
+
nn.init.constant_(m.weight, 1.0)
|
847 |
+
|
848 |
+
@torch.jit.ignore
|
849 |
+
def no_weight_decay(self):
|
850 |
+
return {'absolute_pos_embed'}
|
851 |
+
|
852 |
+
@torch.jit.ignore
|
853 |
+
def no_weight_decay_keywords(self):
|
854 |
+
return {'relative_position_bias_table'}
|
855 |
+
|
856 |
+
|
857 |
+
def forward_features(self, x):
|
858 |
+
x_size = (x.shape[2], x.shape[3])
|
859 |
+
x = self.patch_embed(x)
|
860 |
+
if self.ape:
|
861 |
+
x = x + self.absolute_pos_embed
|
862 |
+
x = self.pos_drop(x)
|
863 |
+
|
864 |
+
for layer in self.layers:
|
865 |
+
x = layer(x, x_size)
|
866 |
+
|
867 |
+
x = self.norm(x) # B L C
|
868 |
+
x = self.patch_unembed(x, x_size)
|
869 |
+
|
870 |
+
return x
|
871 |
+
|
872 |
+
def infer_image(self, image_path, device):
|
873 |
+
|
874 |
+
io_backend_opt = {'type':'disk'}
|
875 |
+
self.file_client = FileClient(io_backend_opt.pop('type'), **io_backend_opt)
|
876 |
+
|
877 |
+
# load lq image
|
878 |
+
lq_path = image_path
|
879 |
+
img_bytes = self.file_client.get(lq_path, 'lq')
|
880 |
+
img_lq = imfrombytes(img_bytes, float32=True)
|
881 |
+
|
882 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
883 |
+
x = img2tensor(img_lq, bgr2rgb=True, float32=True)[None,...]
|
884 |
+
|
885 |
+
x= x.to(device)
|
886 |
+
|
887 |
+
out = self(x)
|
888 |
+
|
889 |
+
out = out.cpu()
|
890 |
+
|
891 |
+
out = tensor2img(out)
|
892 |
+
|
893 |
+
return out
|
894 |
+
|
895 |
+
def forward(self, x):
|
896 |
+
H, W = x.shape[2:]
|
897 |
+
|
898 |
+
self.mean = self.mean.type_as(x)
|
899 |
+
x = (x - self.mean) * self.img_range
|
900 |
+
|
901 |
+
if self.upsampler == 'pixelshuffle':
|
902 |
+
# for classical SR
|
903 |
+
x = self.conv_first(x)
|
904 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
905 |
+
x = self.conv_before_upsample(x)
|
906 |
+
x = self.conv_last(self.upsample(x))
|
907 |
+
elif self.upsampler == 'pixelshuffledirect':
|
908 |
+
# for lightweight SR
|
909 |
+
x = self.conv_first(x)
|
910 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
911 |
+
x = self.upsample(x)
|
912 |
+
elif self.upsampler == 'nearest+conv':
|
913 |
+
# for real-world SR
|
914 |
+
x = self.conv_first(x)
|
915 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
916 |
+
x = self.conv_before_upsample(x)
|
917 |
+
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
918 |
+
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
919 |
+
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
920 |
+
else:
|
921 |
+
# for image denoising and JPEG compression artifact reduction
|
922 |
+
x_first = self.conv_first(x)
|
923 |
+
res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
924 |
+
x = x + self.conv_last(res)
|
925 |
+
|
926 |
+
x = x / self.img_range + self.mean
|
927 |
+
|
928 |
+
return x[:, :, :H*self.upscale, :W*self.upscale]
|
929 |
+
|
930 |
+
|
931 |
+
if __name__ == '__main__':
|
932 |
+
upscale = 4
|
933 |
+
base_win_size = [8, 8]
|
934 |
+
height = (1024 // upscale // base_win_size[0] + 1) * base_win_size[0]
|
935 |
+
width = (720 // upscale // base_win_size[1] + 1) * base_win_size[1]
|
936 |
+
|
937 |
+
## HiT-SIR
|
938 |
+
model = HiT_SRF(upscale=4, img_size=(height, width),
|
939 |
+
base_win_size=base_win_size, img_range=1., depths=[6, 6, 6, 6],
|
940 |
+
embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
|
941 |
+
|
942 |
+
params_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
943 |
+
print("params: ", params_num)
|
944 |
+
|
945 |
+
|
|
|
|