|
--- |
|
base_model: google/owlv2-base-patch16-finetuned |
|
library_name: transformers.js |
|
--- |
|
|
|
https://huggingface.co/google/owlv2-base-patch16-finetuned with ONNX weights to be compatible with Transformers.js. |
|
|
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Zero-shot object detection w/ `Xenova/owlv2-base-patch16-finetuned`. |
|
```js |
|
import { pipeline } from '@xenova/transformers'; |
|
|
|
const detector = await pipeline('zero-shot-object-detection', 'Xenova/owlv2-base-patch16-finetuned'); |
|
|
|
const url = 'http://images.cocodataset.org/val2017/000000039769.jpg'; |
|
const candidate_labels = ['a photo of a cat', 'a photo of a dog']; |
|
const output = await detector(url, candidate_labels); |
|
console.log(output); |
|
// [ |
|
// { score: 0.6951543688774109, label: 'a photo of a cat', box: { xmin: 326, ymin: 23, xmax: 650, ymax: 376 } }, |
|
// { score: 0.5766839385032654, label: 'a photo of a cat', box: { xmin: 6, ymin: 63, xmax: 315, ymax: 487 } } |
|
// ] |
|
``` |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/yesvZXyal8RGtNZ5Diuma.png) |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |