File size: 3,692 Bytes
055c1d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910bce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f2fece
 
1910bce
 
 
 
 
 
 
 
6f2fece
1910bce
 
6f2fece
 
 
1910bce
6f2fece
 
 
1910bce
 
 
 
 
 
 
 
 
 
e401779
1910bce
6f2fece
1910bce
6f2fece
1910bce
6f2fece
e401779
6f2fece
 
e401779
6f2fece
 
 
 
e401779
6f2fece
 
1910bce
6f2fece
 
236e9ef
6f2fece
1910bce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f2fece
 
1910bce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
license: apache-2.0
datasets:
- 012shin/fake-audio-detection-augmented
language:
- en
metrics:
- accuracy
- f1
- recall
- precision
base_model:
- MIT/ast-finetuned-audioset-10-10-0.4593
pipeline_tag: audio-classification
library_name: transformers
tags:
- audio
- audio-classification
- fake-audio-detection
- ast
model-index:
- name: ast-fakeaudio-detector
  results:
  - task:
      type: audio-classification
      name: Audio Classification
    dataset:
      name: fake-audio-detection-augmented
      type: 012shin/fake-audio-detection-augmented
    metrics:
      - type: accuracy
        value: 0.9662
      - type: f1
        value: 0.9710
      - type: precision
        value: 0.9692
      - type: recall
        value: 0.9728
---

# AST Fine-tuned for Fake Audio Detection

This model is a binary classification head fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) for detecting fake/synthetic audio. The original AST (Audio Spectrogram Transformer) classification head was replaced with a binary classification layer optimized for fake audio detection.

## Model Description

- **Base Model**: MIT/ast-finetuned-audioset-10-10-0.4593 (AST pretrained on AudioSet)
- **Task**: Binary classification (fake/real audio detection)
- **Input**: Audio converted to Mel spectrogram (128 mel bins, 1024 time frames)
- **Output**: Binary prediction (0: real audio, 1: fake audio)
- **Training Hardware**: 2x NVIDIA T4 GPUs

## Training Configuration

```python
{
    'learning_rate': 1e-5,
    'weight_decay': 0.01,
    'n_iterations': 1500,
    'batch_size': 16,
    'gradient_accumulation_steps': 8,
    'validate_every': 500,
    'val_samples': 5000
}
```

## Dataset Distribution

The model was trained on a filtered dataset with the following class distribution:

```
Training Set:
- Fake Audio (0): 29,089 samples (53.97%)
- Real Audio (1): 24,813 samples (46.03%)

Test Set:
- Fake Audio (0): 7,229 samples (53.64%)
- Real Audio (1): 6,247 samples (46.36%)
```

## Model Performance

Final metrics on validation set:
- Accuracy: 0.9662 (96.62%)
- F1 Score: 0.9710 (97.10%)
- Precision: 0.9692 (96.92%)
- Recall: 0.9728 (97.28%)

# Usage Guide

## Model Usage
```python
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
import torchaudio
import torch

# Load audio file
waveform, sample_rate = torchaudio.load("path_to_audio.ogg")

# Initialize model and feature extractor
model_name = "WpythonW/ast-fakeaudio-detector"
extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = AutoModelForAudioClassification.from_pretrained(model_name)

# Process audio and get predictions
inputs = extractor(waveform.squeeze(), sampling_rate=16000, return_tensors="pt")
with torch.no_grad():
    logits = model(**inputs).logits
    probabilities = torch.nn.functional.softmax(logits, dim=-1)

print(f"Probability of fake audio: {probabilities[0][0]:.2%}")
```

## Limitations

Important considerations when using this model:
1. The model works best with 16kHz audio input
2. Performance may vary with different types of audio manipulation not present in training data
3. Very short audio clips (<1 second) might not provide reliable results
4. The model should not be used as the sole determiner for real/fake audio detection

## Training Details

The training process involved:
1. Loading the base AST model pretrained on AudioSet
2. Replacing the classification head with a binary classifier
3. Fine-tuning on the fake audio detection dataset for 1500 iterations
4. Using gradient accumulation (8 steps) with batch size 16
5. Implementing validation checks every 500 steps