Update README.md
Browse files
README.md
CHANGED
@@ -36,4 +36,102 @@ model-index:
|
|
36 |
value: 0.9692
|
37 |
- type: recall
|
38 |
value: 0.9728
|
39 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
value: 0.9692
|
37 |
- type: recall
|
38 |
value: 0.9728
|
39 |
+
---
|
40 |
+
|
41 |
+
# AST Fine-tuned for Fake Audio Detection
|
42 |
+
|
43 |
+
This model is a binary classification head fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) for detecting fake/synthetic audio. The original AST (Audio Spectrogram Transformer) classification head was replaced with a binary classification layer optimized for fake audio detection.
|
44 |
+
|
45 |
+
## Model Description
|
46 |
+
|
47 |
+
- **Base Model**: MIT/ast-finetuned-audioset-10-10-0.4593 (AST pretrained on AudioSet)
|
48 |
+
- **Task**: Binary classification (fake/real audio detection)
|
49 |
+
- **Input**: Audio converted to Mel spectrogram (128 mel bins, 1024 time frames)
|
50 |
+
- **Output**: Binary prediction (0: real audio, 1: fake audio)
|
51 |
+
- **Training Hardware**: 2x NVIDIA T4 GPUs
|
52 |
+
|
53 |
+
## Training Configuration
|
54 |
+
|
55 |
+
```python
|
56 |
+
{
|
57 |
+
'learning_rate': 1e-5,
|
58 |
+
'weight_decay': 0.01,
|
59 |
+
'n_iterations': 10000,
|
60 |
+
'batch_size': 8,
|
61 |
+
'gradient_accumulation_steps': 8,
|
62 |
+
'validate_every': 500,
|
63 |
+
'val_samples': 5000
|
64 |
+
}
|
65 |
+
```
|
66 |
+
|
67 |
+
## Dataset Distribution
|
68 |
+
|
69 |
+
The model was trained on [012shin/fake-audio-detection-augmented](https://huggingface.co/datasets/012shin/fake-audio-detection-augmented) dataset with the following class distribution:
|
70 |
+
|
71 |
+
```
|
72 |
+
Training Set (80%):
|
73 |
+
- Real Audio (0): 43,460 samples (63.69%)
|
74 |
+
- Fake Audio (1): 24,776 samples (36.31%)
|
75 |
+
|
76 |
+
Test Set (20%):
|
77 |
+
- Real Audio (0): 10,776 samples (63.17%)
|
78 |
+
- Fake Audio (1): 6,284 samples (36.83%)
|
79 |
+
```
|
80 |
+
|
81 |
+
## Model Performance
|
82 |
+
|
83 |
+
Final metrics on validation set:
|
84 |
+
- Accuracy: 0.9662 (96.62%)
|
85 |
+
- F1 Score: 0.9710 (97.10%)
|
86 |
+
- Precision: 0.9692 (96.92%)
|
87 |
+
- Recall: 0.9728 (97.28%)
|
88 |
+
|
89 |
+
## Usage
|
90 |
+
|
91 |
+
Here's how to use the model:
|
92 |
+
|
93 |
+
```python
|
94 |
+
import torch
|
95 |
+
import torchaudio
|
96 |
+
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
|
97 |
+
|
98 |
+
# Load model and processor
|
99 |
+
model = AutoModelForAudioClassification.from_pretrained("your-username/ast-fakeaudio-detector")
|
100 |
+
processor = AutoFeatureExtractor.from_pretrained("your-username/ast-fakeaudio-detector")
|
101 |
+
|
102 |
+
# Load and preprocess audio (ensure 16kHz sampling rate)
|
103 |
+
audio_path = "path/to/audio.wav"
|
104 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
105 |
+
if sample_rate != 16000:
|
106 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
107 |
+
waveform = resampler(waveform)
|
108 |
+
|
109 |
+
# Process audio
|
110 |
+
inputs = processor(waveform, sampling_rate=16000, return_tensors="pt")
|
111 |
+
|
112 |
+
# Get prediction
|
113 |
+
with torch.no_grad():
|
114 |
+
outputs = model(**inputs)
|
115 |
+
probabilities = torch.sigmoid(outputs.logits)
|
116 |
+
is_fake = probabilities > 0.5
|
117 |
+
|
118 |
+
print(f"Probability of being fake audio: {probabilities[0][0]:.4f}")
|
119 |
+
print(f"Prediction: {'FAKE' if is_fake else 'REAL'} audio")
|
120 |
+
```
|
121 |
+
|
122 |
+
## Limitations
|
123 |
+
|
124 |
+
Important considerations when using this model:
|
125 |
+
1. The model works best with 16kHz audio input
|
126 |
+
2. Performance may vary with different types of audio manipulation not present in training data
|
127 |
+
3. Very short audio clips (<1 second) might not provide reliable results
|
128 |
+
4. The model should not be used as the sole determiner for real/fake audio detection
|
129 |
+
|
130 |
+
## Training Details
|
131 |
+
|
132 |
+
The training process involved:
|
133 |
+
1. Loading the base AST model pretrained on AudioSet
|
134 |
+
2. Replacing the classification head with a binary classifier
|
135 |
+
3. Fine-tuning on the fake audio detection dataset for 10000 iterations
|
136 |
+
4. Using gradient accumulation (8 steps) with batch size 8
|
137 |
+
5. Implementing validation checks every 500 steps
|