Wiebke's picture
End of training
9f8b4f7 verified
---
license: mit
base_model: bert-base-german-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Germeval24StageTask2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Germeval24StageTask2
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4272
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 0.8575
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log | 1.0 | 150 | 0.4852 | 1.0 | 1.0 | 1.0 | 0.8099 |
| No log | 2.0 | 300 | 0.4305 | 1.0 | 1.0 | 1.0 | 0.8499 |
| No log | 3.0 | 450 | 0.4272 | 1.0 | 1.0 | 1.0 | 0.8575 |
| 0.4985 | 4.0 | 600 | 0.4776 | 1.0 | 1.0 | 1.0 | 0.8510 |
| 0.4985 | 5.0 | 750 | 0.5090 | 1.0 | 1.0 | 1.0 | 0.8629 |
| 0.4985 | 6.0 | 900 | 0.5940 | 1.0 | 1.0 | 1.0 | 0.8521 |
| 0.1257 | 7.0 | 1050 | 0.5592 | 1.0 | 1.0 | 1.0 | 0.8618 |
| 0.1257 | 8.0 | 1200 | 0.6132 | 1.0 | 1.0 | 1.0 | 0.8521 |
| 0.1257 | 9.0 | 1350 | 0.6580 | 1.0 | 1.0 | 1.0 | 0.8639 |
| 0.0448 | 10.0 | 1500 | 0.6727 | 1.0 | 1.0 | 1.0 | 0.8629 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1