metadata
library_name: peft
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
base_model: NousResearch/Llama-2-7b-hf
model-index:
- name: billm-llama-7b-conll03-ner
results: []
billm-llama-7b-conll03-ner
This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1894
- Precision: 0.9228
- Recall: 0.9364
- F1: 0.9296
- Accuracy: 0.9861
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0453 | 1.0 | 1756 | 0.1025 | 0.9064 | 0.9227 | 0.9145 | 0.9836 |
0.0204 | 2.0 | 3512 | 0.0932 | 0.9187 | 0.9258 | 0.9222 | 0.9846 |
0.0105 | 3.0 | 5268 | 0.1267 | 0.9183 | 0.9308 | 0.9245 | 0.9855 |
0.0039 | 4.0 | 7024 | 0.1680 | 0.9213 | 0.9384 | 0.9298 | 0.9861 |
0.0014 | 5.0 | 8780 | 0.1761 | 0.9228 | 0.9366 | 0.9297 | 0.9861 |
0.0008 | 6.0 | 10536 | 0.1835 | 0.9228 | 0.9361 | 0.9294 | 0.9861 |
0.0005 | 7.0 | 12292 | 0.1880 | 0.9233 | 0.9363 | 0.9297 | 0.9861 |
0.0003 | 8.0 | 14048 | 0.1893 | 0.9230 | 0.9368 | 0.9298 | 0.9861 |
0.0003 | 9.0 | 15804 | 0.1895 | 0.9228 | 0.9364 | 0.9296 | 0.9861 |
0.0002 | 10.0 | 17560 | 0.1894 | 0.9228 | 0.9364 | 0.9296 | 0.9861 |
Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.0.1
- Datasets 2.16.0
- Tokenizers 0.15.0