zephyr-7b-dpo-full

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2016
  • Rewards/chosen: -5.9224
  • Rewards/rejected: -7.8036
  • Rewards/accuracies: 0.7380
  • Rewards/margins: 1.8812
  • Logps/rejected: -3.9018
  • Logps/chosen: -2.9612
  • Logits/rejected: -1.8800
  • Logits/chosen: -1.8679

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
1.2816 0.8375 400 1.2016 -5.9224 -7.8036 0.7380 1.8812 -3.9018 -2.9612 -1.8800 -1.8679

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.20.1
Downloads last month
208
Safetensors
Model size
1.24B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Wenboz/zephyr-7b-dpo-full

Finetuned
(311)
this model
Quantizations
1 model