T5-L128-belarusian / README.md
WelfCrozzo's picture
Update README.md
6bada3c
metadata
license: openrail
datasets:
  - WelfCrozzo/kupalinka
language:
  - be
  - en
  - ru
metrics:
  - bleu
library_name: transformers
tags:
  - translation
widget:
  - text: <extra_id_1>да зорак праз цяжкасці
    example_title: be -> ru
  - text: <extra_id_2>да зорак праз цяжкасці
    example_title: be -> en
  - text: <extra_id_3>к звездам через трудности
    example_title: ru -> be
  - text: <extra_id_5>к звездам через трудности
    example_title: ru -> en
  - text: <extra_id_6>to the stars through difficulties.
    example_title: en -> be
  - text: <extra_id_7>to the stars through difficulties.
    example_title: en -> ru

T5 for belarusian language

model image

This model is based on T5-small with sequence length equal 128 tokens. Model trained from scratch on RTX 3090 24GB.

Supported tasks:

  • translation BE to RU: <extra_id_1>
  • translation BE to EN: <extra_id_2>
  • translation RU to BE: <extra_id_3>
  • translation RU to EN: <extra_id_5>
  • translation EN to BE: <extra_id_6>
  • translation EN to RU: <extra_id_7>

Metrics:

How to Get Started with the Model

Click to expand
from transformers import T5TokenizerFast, T5ForConditionalGeneration

tokenizer = T5TokenizerFast.from_pretrained("WelfCrozzo/T5-L128-belarusian")
model = T5ForConditionalGeneration.from_pretrained("WelfCrozzo/T5-L128-belarusian")

x = tokenizer.encode('<extra_id_1>да зорак праз цяжкасці', return_tensors='pt')

result = model.generate(x, return_dict_in_generate=True, output_scores=True,max_length=128)
print(tokenizer.decode(result["sequences"][0]))

References