checkpoints_29_9_microsoft_deberta_V1

This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7815
  • Map@3: 0.8290
  • Accuracy: 0.7333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Map@3 Accuracy
1.6045 0.05 200 1.6095 0.4593 0.3030
1.3669 0.11 400 1.3360 0.7215 0.5980
0.9993 0.16 600 1.0403 0.7737 0.6727
0.9608 0.21 800 0.9539 0.7966 0.6990
0.9017 0.27 1000 0.9125 0.7997 0.6970
0.885 0.32 1200 0.8719 0.8172 0.7192
0.8222 0.37 1400 0.8462 0.8125 0.7030
0.769 0.43 1600 0.8376 0.8158 0.7131
0.7676 0.48 1800 0.8109 0.8178 0.7152
0.8413 0.53 2000 0.8279 0.8212 0.7212
0.809 0.59 2200 0.8012 0.8212 0.7212
0.8809 0.64 2400 0.8037 0.8290 0.7333
0.8028 0.69 2600 0.7949 0.8249 0.7293
0.8259 0.75 2800 0.7938 0.8283 0.7354
0.7548 0.8 3000 0.7818 0.8300 0.7354
0.7422 0.85 3200 0.7797 0.8316 0.7374
0.801 0.91 3400 0.7811 0.8303 0.7354
0.7 0.96 3600 0.7815 0.8290 0.7333

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.0
  • Datasets 2.9.0
  • Tokenizers 0.13.3
Downloads last month
48
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for VuongQuoc/checkpoints_29_9_microsoft_deberta_V1

Finetuned
(123)
this model