|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: checkpoints_28_9_microsoft_deberta_V5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# checkpoints_28_9_microsoft_deberta_V5 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6408 |
|
- Map@3: 0.8542 |
|
- Accuracy: 0.76 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.2 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| |
|
| 1.6111 | 0.05 | 25 | 1.6092 | 0.5092 | 0.325 | |
|
| 1.6139 | 0.11 | 50 | 1.6085 | 0.7 | 0.575 | |
|
| 1.6096 | 0.16 | 75 | 1.5867 | 0.7583 | 0.645 | |
|
| 1.2905 | 0.21 | 100 | 1.1496 | 0.7767 | 0.66 | |
|
| 1.0263 | 0.27 | 125 | 0.8628 | 0.8067 | 0.705 | |
|
| 0.9475 | 0.32 | 150 | 0.7252 | 0.8458 | 0.75 | |
|
| 0.841 | 0.37 | 175 | 0.7018 | 0.8492 | 0.76 | |
|
| 0.8301 | 0.43 | 200 | 0.7137 | 0.8492 | 0.755 | |
|
| 0.823 | 0.48 | 225 | 0.6633 | 0.8525 | 0.755 | |
|
| 0.8263 | 0.53 | 250 | 0.6751 | 0.8608 | 0.765 | |
|
| 0.7962 | 0.59 | 275 | 0.6704 | 0.8542 | 0.755 | |
|
| 0.8013 | 0.64 | 300 | 0.6583 | 0.8525 | 0.755 | |
|
| 0.789 | 0.69 | 325 | 0.6497 | 0.8533 | 0.76 | |
|
| 0.7979 | 0.75 | 350 | 0.6512 | 0.8525 | 0.755 | |
|
| 0.7751 | 0.8 | 375 | 0.6445 | 0.8583 | 0.765 | |
|
| 0.7993 | 0.85 | 400 | 0.6424 | 0.8558 | 0.765 | |
|
| 0.7685 | 0.91 | 425 | 0.6408 | 0.8542 | 0.76 | |
|
| 0.7807 | 0.96 | 450 | 0.6408 | 0.8542 | 0.76 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.3 |
|
|