SegFormer_b2_mappillary_

This model is a fine-tuned version of nvidia/segformer-b2-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.9598
  • eval_mean_iou: 0.6780
  • eval_mean_accuracy: 0.7951
  • eval_overall_accuracy: 0.9391
  • eval_accuracy_construction--barrier--fence: 0.6674
  • eval_accuracy_construction--barrier--guard-rail: 0.7787
  • eval_accuracy_construction--barrier--other-barrier: 0.7093
  • eval_accuracy_construction--barrier--wall: 0.6692
  • eval_accuracy_construction--flat--road: 0.9505
  • eval_accuracy_construction--flat--service-lane: 0.5410
  • eval_accuracy_construction--flat--sidewalk: 0.9029
  • eval_accuracy_construction--structure--building: 0.9494
  • eval_accuracy_human--person: 0.8428
  • eval_accuracy_human--rider--bicyclist: 0.7374
  • eval_accuracy_marking--crosswalk-zebra: 0.8275
  • eval_accuracy_marking--general: 0.6969
  • eval_accuracy_nature--sky: 0.9902
  • eval_accuracy_nature--terrain: 0.8238
  • eval_accuracy_nature--vegetation: 0.9447
  • eval_accuracy_object--support--pole: 0.5732
  • eval_accuracy_object--support--traffic-sign-frame: 0.6710
  • eval_accuracy_object--traffic-light: 0.7524
  • eval_accuracy_object--traffic-sign--front: 0.8163
  • eval_accuracy_object--vehicle--bicycle: 0.7771
  • eval_accuracy_object--vehicle--bus: 0.8829
  • eval_accuracy_object--vehicle--car: 0.9659
  • eval_accuracy_object--vehicle--truck: 0.8158
  • eval_iou_construction--barrier--fence: 0.5508
  • eval_iou_construction--barrier--guard-rail: 0.6288
  • eval_iou_construction--barrier--other-barrier: 0.5638
  • eval_iou_construction--barrier--wall: 0.5354
  • eval_iou_construction--flat--road: 0.9129
  • eval_iou_construction--flat--service-lane: 0.4333
  • eval_iou_construction--flat--sidewalk: 0.7696
  • eval_iou_construction--structure--building: 0.8821
  • eval_iou_human--person: 0.6700
  • eval_iou_human--rider--bicyclist: 0.5363
  • eval_iou_marking--crosswalk-zebra: 0.7082
  • eval_iou_marking--general: 0.5822
  • eval_iou_nature--sky: 0.9811
  • eval_iou_nature--terrain: 0.6964
  • eval_iou_nature--vegetation: 0.8935
  • eval_iou_object--support--pole: 0.4515
  • eval_iou_object--support--traffic-sign-frame: 0.5508
  • eval_iou_object--traffic-light: 0.5782
  • eval_iou_object--traffic-sign--front: 0.7134
  • eval_iou_object--vehicle--bicycle: 0.5514
  • eval_iou_object--vehicle--bus: 0.7858
  • eval_iou_object--vehicle--car: 0.9004
  • eval_iou_object--vehicle--truck: 0.7182
  • eval_runtime: 1416.4555
  • eval_samples_per_second: 1.412
  • eval_steps_per_second: 0.706
  • epoch: 14.0
  • step: 31500

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.1.2+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
27.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Vrjb/SegFormer_b2_mappillary_

Finetuned
(6)
this model