VlSav's picture
Upload README.md with huggingface_hub
f58c2f0 verified
metadata
tags:
  - llama-cpp
  - gguf-my-repo
base_model: IlyaGusev/saiga_qwen2_7b_sft_m2_d6_kto_m1_d5

VlSav/saiga_qwen2_7b_sft_m2_d6_kto_m1_d5-Q6_K-GGUF

This model was converted to GGUF format from IlyaGusev/saiga_qwen2_7b_sft_m2_d6_kto_m1_d5 using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama --hf-repo VlSav/saiga_qwen2_7b_sft_m2_d6_kto_m1_d5-Q6_K-GGUF --hf-file saiga_qwen2_7b_sft_m2_d6_kto_m1_d5-q6_k.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo VlSav/saiga_qwen2_7b_sft_m2_d6_kto_m1_d5-Q6_K-GGUF --hf-file saiga_qwen2_7b_sft_m2_d6_kto_m1_d5-q6_k.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./main --hf-repo VlSav/saiga_qwen2_7b_sft_m2_d6_kto_m1_d5-Q6_K-GGUF --hf-file saiga_qwen2_7b_sft_m2_d6_kto_m1_d5-q6_k.gguf -p "The meaning to life and the universe is"

or

./server --hf-repo VlSav/saiga_qwen2_7b_sft_m2_d6_kto_m1_d5-Q6_K-GGUF --hf-file saiga_qwen2_7b_sft_m2_d6_kto_m1_d5-q6_k.gguf -c 2048