metadata
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
datasets:
- glue
model-index:
- name: Llama-2-7b-hf-finetuned-mrpc
results: []
library_name: peft
Llama-2-7b-hf-finetuned-mrpc
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the glue dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 19 | 0.5879 | 0.75 | 0.8 |
Framework versions
- PEFT 0.4.0
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3