VitaliiVrublevskyi's picture
End of training
a5a17e2
|
raw
history blame
2.39 kB
metadata
base_model: meta-llama/Llama-2-7b-hf
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: Llama-2-7b-hf-finetuned-mrpc-v5
    results: []
library_name: peft

Llama-2-7b-hf-finetuned-mrpc-v5

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5514
  • Accuracy: 0.8284
  • F1: 0.8776

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: True
  • load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 9

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss
0.733 1.0 917 0.6912 0.7974 0.6016
0.6103 2.0 1834 0.7402 0.8339 0.5650
0.508 3.0 2751 0.7525 0.8358 0.5246
0.5354 4.0 3668 0.7794 0.8529 0.5318
0.4246 5.0 4585 0.7843 0.8508 0.5279
0.4295 6.0 5502 0.7966 0.8591 0.5248
0.4473 7.0 6419 0.5169 0.8162 0.8696
0.419 8.0 7336 0.5552 0.8260 0.8778
0.3876 9.0 8253 0.5514 0.8284 0.8776

Framework versions

  • PEFT 0.4.0
  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3