|
--- |
|
datasets: |
|
- shenxq/OneVision |
|
- shenxq/VideoChat2 |
|
base_model: |
|
- Vision-CAIR/LongVU_Qwen2_7B_img |
|
model-index: |
|
- name: llava-onevision-qwen-7b-ov |
|
results: |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: EgoSchema |
|
type: egoschema |
|
metrics: |
|
- type: accuracy |
|
value: 67.6 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: MLVU |
|
type: mlvu |
|
metrics: |
|
- type: accuracy |
|
value: 65.4 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: MVBench |
|
type: mvbench |
|
metrics: |
|
- type: accuracy |
|
value: 66.9 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: VideoMME |
|
type: videomme |
|
metrics: |
|
- type: accuracy |
|
value: 60.6 |
|
name: accuracy |
|
verified: true |
|
--- |
|
# LongVU |
|
|
|
Play with the model on the [HF demo](https://huggingface.co/spaces/Vision-CAIR/LongVU). |
|
|
|
<div align="left"> |
|
<a href='https://vision-cair.github.io/LongVU'><img src="https://longvu.s3.amazonaws.com/assets/demo.gif" alt="Demo GIF" style="width: 100%; max-width: 650px;"></a> |
|
</div> |
|
|
|
# Use |
|
|
|
We provide the simple generation process for using our model. For more details, you could refer to [Github](https://github.com/Vision-CAIR/LongVU) |
|
|
|
```python |
|
# git clone https://github.com/Vision-CAIR/LongVU |
|
import numpy as np |
|
import torch |
|
from longvu.builder import load_pretrained_model |
|
from longvu.constants import ( |
|
DEFAULT_IMAGE_TOKEN, |
|
IMAGE_TOKEN_INDEX, |
|
) |
|
from longvu.conversation import conv_templates, SeparatorStyle |
|
from longvu.mm_datautils import ( |
|
KeywordsStoppingCriteria, |
|
process_images, |
|
tokenizer_image_token, |
|
) |
|
from decord import cpu, VideoReader |
|
|
|
tokenizer, model, image_processor, context_len = load_pretrained_model( |
|
"./checkpoints/longvu_qwen", None, "cambrian_qwen", |
|
) |
|
|
|
model.eval() |
|
video_path = "./examples/video1.mp4" |
|
qs = "Describe this video in detail" |
|
|
|
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) |
|
fps = float(vr.get_avg_fps()) |
|
frame_indices = np.array([i for i in range(0, len(vr), round(fps),)]) |
|
video = [] |
|
for frame_index in frame_indices: |
|
img = vr[frame_index].asnumpy() |
|
video.append(img) |
|
video = np.stack(video) |
|
image_sizes = [video[0].shape[:2]] |
|
video = process_images(video, image_processor, model.config) |
|
video = [item.unsqueeze(0) for item in video] |
|
|
|
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs |
|
conv = conv_templates["qwen"].copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) |
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=video, |
|
image_sizes=image_sizes, |
|
do_sample=False, |
|
temperature=0.2, |
|
max_new_tokens=128, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria], |
|
) |
|
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() |
|
``` |