Regional_BnASR

This model is a fine-tuned version of outputs/checkpoint-11500 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8498
  • Wer: 0.7432

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.4681 1.25 500 9.8862 0.9367
2.0154 2.51 1000 9.1645 0.9174
1.9749 3.76 1500 7.8777 0.8787
1.9293 5.02 2000 8.7211 0.8949
1.8588 6.27 2500 8.5633 0.8851
1.8637 7.52 3000 8.9099 0.8895
1.7904 8.79 3500 8.5780 0.8846
1.8647 10.04 4000 8.9881 0.8900
1.8229 11.3 4500 8.6372 0.8818
1.8365 12.56 5000 8.5890 0.8793
1.7912 13.81 5500 8.6685 0.8809
1.792 15.07 6000 8.6862 0.8796
1.7924 16.33 6500 8.5065 0.8763
1.7685 17.58 7000 8.8943 0.8840
1.8004 18.84 7500 9.0298 0.8861
1.7792 20.09 8000 8.8783 0.8818
1.7749 21.35 8500 8.8410 0.8811
1.8002 22.61 9000 8.8083 0.8804
1.7496 23.86 9500 8.8536 0.8815
1.7625 25.12 10000 8.8653 0.8816
1.7468 26.38 10500 8.8854 0.8826
1.7533 27.63 11000 8.8604 0.8799
1.7507 28.89 11500 8.6150 0.8743
1.766 30.14 12000 9.2126 0.8894
1.7641 31.39 12500 8.7537 0.8770
1.7673 32.65 13000 8.7769 0.8764
1.7281 33.92 13500 8.8294 0.8767
1.7315 35.17 14000 9.0875 0.8827
1.7271 36.42 14500 9.0619 0.8826
1.8015 52.26 15000 2.8379 0.7426
1.8405 54.0 15500 2.8486 0.7434
1.8206 55.73 16000 2.8677 0.7445
1.8401 57.47 16500 2.8111 0.7418
1.781 59.21 17000 2.8444 0.7430
1.7892 60.95 17500 2.8829 0.7445
1.8344 62.68 18000 2.8498 0.7432

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.0
Downloads last month
1
Safetensors
Model size
316M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support