Regional_BnASR
This model is a fine-tuned version of outputs/checkpoint-11500 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.8498
- Wer: 0.7432
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- training_steps: 20000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.4681 | 1.25 | 500 | 9.8862 | 0.9367 |
2.0154 | 2.51 | 1000 | 9.1645 | 0.9174 |
1.9749 | 3.76 | 1500 | 7.8777 | 0.8787 |
1.9293 | 5.02 | 2000 | 8.7211 | 0.8949 |
1.8588 | 6.27 | 2500 | 8.5633 | 0.8851 |
1.8637 | 7.52 | 3000 | 8.9099 | 0.8895 |
1.7904 | 8.79 | 3500 | 8.5780 | 0.8846 |
1.8647 | 10.04 | 4000 | 8.9881 | 0.8900 |
1.8229 | 11.3 | 4500 | 8.6372 | 0.8818 |
1.8365 | 12.56 | 5000 | 8.5890 | 0.8793 |
1.7912 | 13.81 | 5500 | 8.6685 | 0.8809 |
1.792 | 15.07 | 6000 | 8.6862 | 0.8796 |
1.7924 | 16.33 | 6500 | 8.5065 | 0.8763 |
1.7685 | 17.58 | 7000 | 8.8943 | 0.8840 |
1.8004 | 18.84 | 7500 | 9.0298 | 0.8861 |
1.7792 | 20.09 | 8000 | 8.8783 | 0.8818 |
1.7749 | 21.35 | 8500 | 8.8410 | 0.8811 |
1.8002 | 22.61 | 9000 | 8.8083 | 0.8804 |
1.7496 | 23.86 | 9500 | 8.8536 | 0.8815 |
1.7625 | 25.12 | 10000 | 8.8653 | 0.8816 |
1.7468 | 26.38 | 10500 | 8.8854 | 0.8826 |
1.7533 | 27.63 | 11000 | 8.8604 | 0.8799 |
1.7507 | 28.89 | 11500 | 8.6150 | 0.8743 |
1.766 | 30.14 | 12000 | 9.2126 | 0.8894 |
1.7641 | 31.39 | 12500 | 8.7537 | 0.8770 |
1.7673 | 32.65 | 13000 | 8.7769 | 0.8764 |
1.7281 | 33.92 | 13500 | 8.8294 | 0.8767 |
1.7315 | 35.17 | 14000 | 9.0875 | 0.8827 |
1.7271 | 36.42 | 14500 | 9.0619 | 0.8826 |
1.8015 | 52.26 | 15000 | 2.8379 | 0.7426 |
1.8405 | 54.0 | 15500 | 2.8486 | 0.7434 |
1.8206 | 55.73 | 16000 | 2.8677 | 0.7445 |
1.8401 | 57.47 | 16500 | 2.8111 | 0.7418 |
1.781 | 59.21 | 17000 | 2.8444 | 0.7430 |
1.7892 | 60.95 | 17500 | 2.8829 | 0.7445 |
1.8344 | 62.68 | 18000 | 2.8498 | 0.7432 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support