library_name: transformers | |
model_name: Vikhr-Qwen-2.5-1.5B-Instruct | |
base_model: Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct | |
language: | |
- ru | |
- en | |
license: apache-2.0 | |
datasets: | |
- Vikhrmodels/GrandMaster-PRO-MAX | |
tags: | |
- mlx | |
# Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit | |
The Model [Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit](https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit) was | |
converted to MLX format from [Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct](https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct) | |
using mlx-lm version **0.20.1**. | |
## Use with mlx | |
```bash | |
pip install mlx-lm | |
``` | |
```python | |
from mlx_lm import load, generate | |
model, tokenizer = load("Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit") | |
prompt="hello" | |
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: | |
messages = [{"role": "user", "content": prompt}] | |
prompt = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
response = generate(model, tokenizer, prompt=prompt, verbose=True) | |
``` | |