metadata
language: vi
datasets:
- cc100
tags:
- summarization
- translation
- question-answering
license: mit
ViT5-large
State-of-the-art pretrained Transformer-based encoder-decoder model for Vietnamese.
How to use
For more details, do check out our Github repo.
Finetunning Example can be found here.
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-large")
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-large")
model.cuda()
Citation
@inproceedings{phan-etal-2022-vit5,
title = "{V}i{T}5: Pretrained Text-to-Text Transformer for {V}ietnamese Language Generation",
author = "Phan, Long and Tran, Hieu and Nguyen, Hieu and Trinh, Trieu H.",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop",
year = "2022",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-srw.18",
pages = "136--142",
}