segformer_cracks_v2 / README.md
Ventalik's picture
End of training
fe7d4a5 verified
metadata
license: other
base_model: nvidia/mit-b3
tags:
  - generated_from_trainer
model-index:
  - name: segformer_cracks_v2
    results: []

segformer_cracks_v2

This model is a fine-tuned version of nvidia/mit-b3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0487
  • Mean Iou: 0.7770
  • Mean Accuracy: 0.8378
  • Overall Accuracy: 0.9803
  • Per Category Iou: [0.9797338315128605, 0.5741766454919031]
  • Per Category Accuracy: [0.9922972168222592, 0.683379436844461]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.0651 1.0 1541 0.0557 0.7543 0.8089 0.9785 [0.9779508845325062, 0.5306877773356943] [0.9928050418870356, 0.6249652426334233]
0.0491 2.0 3082 0.0522 0.7629 0.8195 0.9792 [0.9786365168660656, 0.547127323866261] [0.9926515789371488, 0.6463984572343288]
0.047 3.0 4623 0.0546 0.7519 0.7995 0.9787 [0.9782301112609909, 0.5255903669562288] [0.9938779990669149, 0.6050380673194482]
0.0456 4.0 6164 0.0510 0.7671 0.8248 0.9795 [0.9789779157265575, 0.5552760281623849] [0.9925739681553413, 0.6570897409273347]
0.0442 5.0 7705 0.0509 0.7714 0.8373 0.9794 [0.978875460970978, 0.5639303830124743] [0.9914357800230804, 0.6831791371245445]
0.0439 6.0 9246 0.0502 0.7701 0.8254 0.9799 [0.9794166328395213, 0.5607787508694683] [0.9929877378064772, 0.6578722690116804]
0.0433 7.0 10787 0.0500 0.7738 0.8361 0.9799 [0.979329611841869, 0.5681732097856239] [0.9920131586953994, 0.6802192080134767]
0.0427 8.0 12328 0.0499 0.7775 0.8406 0.9802 [0.9796585654955907, 0.575368007293997] [0.9919935734749642, 0.6891110848654891]
0.0424 9.0 13869 0.0495 0.7780 0.8411 0.9802 [0.9797042588379468, 0.5763456606457494] [0.9919931330972266, 0.6902882749336847]
0.042 10.0 15410 0.0487 0.7770 0.8378 0.9803 [0.9797338315128605, 0.5741766454919031] [0.9922972168222592, 0.683379436844461]

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3