segformer-roof

This model is a fine-tuned version of nvidia/mit-b3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1424
  • Mean Iou: 0.6570
  • Mean Accuracy: 0.7338
  • Overall Accuracy: 0.9484
  • Per Category Iou: [0.9476783882507867, 0.42934908622698137, 0.5939862114533478]
  • Per Category Accuracy: [0.9826387957018243, 0.5398301458913112, 0.6788943731278633]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.2499 1.0 930 0.1815 0.5867 0.6662 0.9365 [0.9366364285161356, 0.31719261329477677, 0.5063121008274123] [0.9792975820886569, 0.391370646753873, 0.6280270152281657]
0.1757 2.0 1860 0.1714 0.6022 0.6773 0.9395 [0.9393634573331426, 0.3425379991526554, 0.5248483866382888] [0.9812229375223134, 0.428240950515148, 0.6224989524490145]
0.1594 3.0 2790 0.1629 0.6084 0.6710 0.9420 [0.9416754823459575, 0.34843136321450174, 0.5350688263682425] [0.9853655573464773, 0.43172953399691005, 0.5959325404903174]
0.1523 4.0 3720 0.1596 0.6076 0.6748 0.9431 [0.9431751130845217, 0.3239168742399479, 0.5556505610312258] [0.9852091404732521, 0.3708811641866297, 0.6682165559673183]
0.1439 5.0 4650 0.1523 0.6302 0.7055 0.9446 [0.9440239408727975, 0.37488313572379306, 0.5716850871490047] [0.9823225423399531, 0.45512728622828424, 0.6790873748340986]
0.1371 6.0 5580 0.1507 0.6435 0.7255 0.9454 [0.9448592138832133, 0.40938956878632793, 0.5763842195624918] [0.9805292644632151, 0.5269108861841263, 0.6691477422245232]
0.1353 7.0 6510 0.1483 0.6535 0.7471 0.9454 [0.945006495944485, 0.428182455906198, 0.5872114398937206] [0.977372124880732, 0.5920333447023434, 0.6719542751488515]
0.1313 8.0 7440 0.1475 0.6543 0.7416 0.9465 [0.9458449483191159, 0.4282098022538787, 0.5888713805135868] [0.9792916130278106, 0.5663642070609791, 0.6792639127879244]
0.1274 9.0 8370 0.1446 0.6511 0.7257 0.9477 [0.9470057563004056, 0.41812909680083715, 0.5881565577705948] [0.983095828320569, 0.5191575508625893, 0.6747574079503997]
0.1274 10.0 9300 0.1424 0.6570 0.7338 0.9484 [0.9476783882507867, 0.42934908622698137, 0.5939862114533478] [0.9826387957018243, 0.5398301458913112, 0.6788943731278633]

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
47
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Ventalik/segformer-roof

Base model

nvidia/mit-b3
Finetuned
(12)
this model