esp-to-lsm-barto-model

This model is a fine-tuned version of vgaraujov/bart-base-spanish on Spanish-Mexican Sign Language (MSL) glosses dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0118
  • Bleu: 82.2615
  • Rouge: {'rouge1': 0.9459411340293693, 'rouge2': 0.8725612535612537, 'rougeL': 0.9409690603514131, 'rougeLsum': 0.9414154570919278}
  • Ter: 7.9703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Rouge Ter
0.0862 1.0 85 0.0441 48.0832 {'rouge1': 0.7799851292498354, 'rouge2': 0.6094051319051321, 'rougeL': 0.7634691389764923, 'rougeLsum': 0.7637001348324879} 34.4764
0.0323 2.0 170 0.0214 72.9928 {'rouge1': 0.884157046828874, 'rouge2': 0.7702001337442517, 'rougeL': 0.8722237432043938, 'rougeLsum': 0.8720308750417114} 16.6821
0.0198 3.0 255 0.0161 78.5669 {'rouge1': 0.9199390239390244, 'rouge2': 0.82409139009139, 'rougeL': 0.911472143869203, 'rougeLsum': 0.9116302602626135} 12.0482
0.0162 4.0 340 0.0143 79.2390 {'rouge1': 0.9243402735608619, 'rouge2': 0.8460535205535207, 'rougeL': 0.9158039177598002, 'rougeLsum': 0.9159157335039689} 10.7507
0.0137 5.0 425 0.0137 82.3938 {'rouge1': 0.9334139504286565, 'rouge2': 0.8579696784696786, 'rougeL': 0.9274591149591148, 'rougeLsum': 0.927894385026738} 9.6386
0.0108 6.0 510 0.0128 84.1329 {'rouge1': 0.9350887445887449, 'rouge2': 0.8754486161986161, 'rougeL': 0.9311620617944146, 'rougeLsum': 0.9313348612172142} 9.0825
0.0098 7.0 595 0.0129 79.7416 {'rouge1': 0.9399191766838828, 'rouge2': 0.8716096403596405, 'rougeL': 0.9330582073155609, 'rougeLsum': 0.933733249865603} 9.4532
0.009 8.0 680 0.0125 82.9321 {'rouge1': 0.9443956476530007, 'rouge2': 0.8689144281644281, 'rougeL': 0.9390896358543419, 'rougeLsum': 0.9394144809438929} 8.8971
0.0084 9.0 765 0.0122 81.9698 {'rouge1': 0.946071417961124, 'rouge2': 0.8742369759869761, 'rougeL': 0.9409199134199135, 'rougeLsum': 0.9414803284950346} 9.0825
0.0068 10.0 850 0.0121 81.9526 {'rouge1': 0.9484588107970461, 'rouge2': 0.8778730158730159, 'rougeL': 0.9433170783464899, 'rougeLsum': 0.9437279305661661} 8.4337
0.0078 11.0 935 0.0118 82.4911 {'rouge1': 0.9460536750830865, 'rouge2': 0.8745218762718765, 'rougeL': 0.9401823225793814, 'rougeLsum': 0.9404524821583646} 8.8044
0.0063 12.0 1020 0.0120 81.7252 {'rouge1': 0.9465396825396828, 'rouge2': 0.8755185185185186, 'rougeL': 0.9404898777692895, 'rougeLsum': 0.941089275103981} 8.8044
0.0069 13.0 1105 0.0121 81.7348 {'rouge1': 0.9456640068308027, 'rouge2': 0.8716636381048146, 'rougeL': 0.940350419274568, 'rougeLsum': 0.941292909747631} 8.5264
0.0059 14.0 1190 0.0120 82.7243 {'rouge1': 0.9473343307019777, 'rouge2': 0.8731392958892958, 'rougeL': 0.9422385620915033, 'rougeLsum': 0.9425819221628045} 8.4337
0.006 15.0 1275 0.0118 81.2037 {'rouge1': 0.9470927234530175, 'rouge2': 0.8718730158730159, 'rougeL': 0.942004562431033, 'rougeLsum': 0.9425554706731177} 8.3411
0.0055 16.0 1360 0.0119 82.1601 {'rouge1': 0.9435703038791275, 'rouge2': 0.8706992266992267, 'rougeL': 0.938448826500297, 'rougeLsum': 0.9388509252185724} 8.1557
0.0055 17.0 1445 0.0119 82.0465 {'rouge1': 0.9453517120564336, 'rouge2': 0.8718517740429506, 'rougeL': 0.9403101408825094, 'rougeLsum': 0.940731923391366} 8.0630
0.0051 18.0 1530 0.0118 82.1849 {'rouge1': 0.9452478036669215, 'rouge2': 0.8716373626373629, 'rougeL': 0.9402017337237925, 'rougeLsum': 0.9406384008148714} 8.0630
0.0055 19.0 1615 0.0118 82.0985 {'rouge1': 0.9452005559799677, 'rouge2': 0.8723565323565323, 'rougeL': 0.9399868644427471, 'rougeLsum': 0.9405265469824293} 8.0630
0.0052 20.0 1700 0.0118 82.2615 {'rouge1': 0.9459411340293693, 'rouge2': 0.8725612535612537, 'rougeL': 0.9409690603514131, 'rougeLsum': 0.9414154570919278} 7.9703

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
55
Safetensors
Model size
139M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for VaniLara/esp-to-lsm-barto-model

Finetuned
(9)
this model